Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Hiroshi Ooyama.
Annals of the Rheumatic Diseases | 2016
Hirotaka Matsuo; Ken Yamamoto; Hirofumi Nakaoka; Akiyoshi Nakayama; Masayuki Sakiyama; Toshinori Chiba; Atsushi Takahashi; Takahiro Nakamura; Hiroshi Nakashima; Yuzo Takada; Inaho Danjoh; Seiko Shimizu; Junko Abe; Yusuke Kawamura; Sho Terashige; Hiraku Ogata; Seishiro Tatsukawa; Guang Yin; Rieko Okada; Emi Morita; Mariko Naito; Atsumi Tokumasu; Hiroyuki Onoue; Keiichi Iwaya; Toshimitsu Ito; Tappei Takada; Katsuhisa Inoue; Yukio Kato; Yukio Nakamura; Yutaka Sakurai
Objective Gout, caused by hyperuricaemia, is a multifactorial disease. Although genome-wide association studies (GWASs) of gout have been reported, they included self-reported gout cases in which clinical information was insufficient. Therefore, the relationship between genetic variation and clinical subtypes of gout remains unclear. Here, we first performed a GWAS of clinically defined gout cases only. Methods A GWAS was conducted with 945 patients with clinically defined gout and 1213 controls in a Japanese male population, followed by replication study of 1048 clinically defined cases and 1334 controls. Results Five gout susceptibility loci were identified at the genome-wide significance level (p<5.0×10−8), which contained well-known urate transporter genes (ABCG2 and SLC2A9) and additional genes: rs1260326 (p=1.9×10−12; OR=1.36) of GCKR (a gene for glucose and lipid metabolism), rs2188380 (p=1.6×10−23; OR=1.75) of MYL2-CUX2 (genes associated with cholesterol and diabetes mellitus) and rs4073582 (p=6.4×10−9; OR=1.66) of CNIH-2 (a gene for regulation of glutamate signalling). The latter two are identified as novel gout loci. Furthermore, among the identified single-nucleotide polymorphisms (SNPs), we demonstrated that the SNPs of ABCG2 and SLC2A9 were differentially associated with types of gout and clinical parameters underlying specific subtypes (renal underexcretion type and renal overload type). The effect of the risk allele of each SNP on clinical parameters showed significant linear relationships with the ratio of the case–control ORs for two distinct types of gout (r=0.96 [p=4.8×10−4] for urate clearance and r=0.96 [p=5.0×10−4] for urinary urate excretion). Conclusions Our findings provide clues to better understand the pathogenesis of gout and will be useful for development of companion diagnostics.
Annals of the Rheumatic Diseases | 2017
Akiyoshi Nakayama; Hirofumi Nakaoka; Ken Yamamoto; Masayuki Sakiyama; Amara Shaukat; Yu Toyoda; Yukinori Okada; Yoichiro Kamatani; Takahiro Nakamura; Tappei Takada; Katsuhisa Inoue; Tomoya Yasujima; Hiroaki Yuasa; Yuko Shirahama; Hiroshi Nakashima; Seiko Shimizu; Toshihide Higashino; Yusuke Kawamura; Hiraku Ogata; Makoto Kawaguchi; Yasuyuki Ohkawa; Inaho Danjoh; Atsumi Tokumasu; Keiko Ooyama; Toshimitsu Ito; Takaaki Kondo; Kenji Wakai; Blanka Stiburkova; Karel Pavelka; Lisa K. Stamp
Objective A genome-wide association study (GWAS) of gout and its subtypes was performed to identify novel gout loci, including those that are subtype-specific. Methods Putative causal association signals from a GWAS of 945 clinically defined gout cases and 1213 controls from Japanese males were replicated with 1396 cases and 1268 controls using a custom chip of 1961 single nucleotide polymorphisms (SNPs). We also first conducted GWASs of gout subtypes. Replication with Caucasian and New Zealand Polynesian samples was done to further validate the loci identified in this study. Results In addition to the five loci we reported previously, further susceptibility loci were identified at a genome-wide significance level (p<5.0×10−8): urate transporter genes (SLC22A12 and SLC17A1) and HIST1H2BF-HIST1H4E for all gout cases, and NIPAL1 and FAM35A for the renal underexcretion gout subtype. While NIPAL1 encodes a magnesium transporter, functional analysis did not detect urate transport via NIPAL1, suggesting an indirect association with urate handling. Localisation analysis in the human kidney revealed expression of NIPAL1 and FAM35A mainly in the distal tubules, which suggests the involvement of the distal nephron in urate handling in humans. Clinically ascertained male patients with gout and controls of Caucasian and Polynesian ancestries were also genotyped, and FAM35A was associated with gout in all cases. A meta-analysis of the three populations revealed FAM35A to be associated with gout at a genome-wide level of significance (pmeta=3.58×10−8). Conclusions Our findings including novel gout risk loci provide further understanding of the molecular pathogenesis of gout and lead to a novel concept for the therapeutic target of gout/hyperuricaemia.
Scientific Reports | 2016
Masayuki Sakiyama; Hirotaka Matsuo; Seiko Shimizu; Hiroshi Nakashima; Takahiro Nakamura; Akiyoshi Nakayama; Toshihide Higashino; Mariko Naito; Shino Suma; Asahi Hishida; Takahiro Satoh; Yutaka Sakurai; Tappei Takada; Kimiyoshi Ichida; Hiroshi Ooyama; Toru Shimizu; Nariyoshi Shinomiya
Urate transporter 1 (URAT1/SLC22A12), a urate transporter gene, is a causative gene for renal hypouricemia type 1. Among several reported nonsynonymous URAT1 variants, R90H (rs121907896) and W258X (rs121907892) are frequent causative mutations for renal hypouricemia. However, no case-control study has evaluated the relationship between gout and these two variants. Additionally, the effect size of these two variants on serum uric acid (SUA) levels remains to be clarified. Here, 1,993 primary gout patients and 4,902 health examination participants (3,305 males and 1,597 females) were genotyped with R90H and W258X. These URAT1 variants were not observed in any gout cases, while 174 subjects had the URAT1 variant in 2,499 health examination participants, respectively (P = 8.3 × 10−46). Moreover, in 4,902 health examination participants, the URAT1 nonfunctional variants significantly reduce the risk of hyperuricemia (P = 6.7 × 10−19; risk ratio = 0.036 in males). Males, having 1 or 2 nonfunctional variants of URAT1, show a marked decrease of 2.19 or 5.42 mg/dl SUA, respectively. Similarly, females, having 1 or 2 nonfunctional variants, also evidence a decrease of 1.08 or 3.89 mg/dl SUA, respectively. We show that URAT1 nonfunctional variants are protective genetic factors for gout/hyperuricemia, and also demonstrated the sex-dependent effect size of these URAT1 variants on SUA (P for interaction = 1.5 × 10−12).
Scientific Reports | 2016
Hirotaka Matsuo; Tomoyuki Tsunoda; Keiko Ooyama; Masayuki Sakiyama; Tsuyoshi Sogo; Tappei Takada; Akio Nakashima; Akiyoshi Nakayama; Makoto Kawaguchi; Toshihide Higashino; Kenji Wakai; Hiroshi Ooyama; Ryota Hokari; Hiroshi Suzuki; Kimiyoshi Ichida; Ayano Inui; Shin Fujimori; Nariyoshi Shinomiya
To clarify the physiological and pathophysiological roles of intestinal urate excretion via ABCG2 in humans, we genotyped ABCG2 dysfunctional common variants, Q126X (rs72552713) and Q141K (rs2231142), in end-stage renal disease (hemodialysis) and acute gastroenteritis patients, respectively. ABCG2 dysfunction markedly increased serum uric acid (SUA) levels in 106 hemodialysis patients (P = 1.1 × 10−4), which demonstrated the physiological role of ABCG2 for intestinal urate excretion because their urate excretion almost depends on intestinal excretion via ABCG2. Also, ABCG2 dysfunction significantly elevated SUA in 67 acute gastroenteritis patients (P = 6.3 × 10−3) regardless of the degree of dehydration, which demonstrated the pathophysiological role of ABCG2 in acute gastroenteritis. These findings for the first time show ABCG2-mediated intestinal urate excretion in humans, and indicates the physiological and pathophysiological importance of intestinal epithelium as an excretion pathway besides an absorption pathway. Furthermore, increased SUA could be a useful marker not only for dehydration but also epithelial impairment of intestine.
Scientific Reports | 2016
Masayuki Sakiyama; Hirotaka Matsuo; Hirofumi Nakaoka; Ken Yamamoto; Akiyoshi Nakayama; Takahiro Nakamura; Sayo Kawai; Rieko Okada; Hiroshi Ooyama; Toru Shimizu; Nariyoshi Shinomiya
Gout is a common disease resulting from hyperuricemia. Recently, a genome-wide association study identified an association between gout and a single nucleotide polymorphism (SNP) rs2188380, located on an intergenic region between MYL2 and CUX2 on chromosome 12. However, other genes around rs2188380 could possibly be gout susceptibility genes. Therefore, we performed a fine-mapping study of the MYL2-CUX2 region. From 8,595 SNPs in the MYL2-CUX2 region, 9 tag SNPs were selected, and genotyping of 1,048 male gout patients and 1,334 male controls was performed by TaqMan method. Eight SNPs showed significant associations with gout after Bonferroni correction. rs671 (Glu504Lys) of ALDH2 had the most significant association with gout (P = 1.7 × 10−18, odds ratio = 0.53). After adjustment for rs671, the other 8 SNPs no longer showed a significant association with gout, while the significant association of rs671 remained. rs671 has been reportedly associated with alcohol drinking behavior, and it is well-known that alcohol drinking elevates serum uric acid levels. These data suggest that rs671, a common functional SNP of ALDH2, is a genuine gout-associated SNP in the MYL2-CUX2 locus and that “A” allele (Lys) of rs671 plays a protective role in the development of gout.
Modern Rheumatology | 2015
Tetsuya Yamamoto; Yuji Hidaka; Masaaki Inaba; Eiji Ishimura; Hiroshi Ooyama; Hirokazu Kakuta; Yuji Moriwaki; Kenshi Higami; Akira Ohtawara; Tatsuo Hosoya; Hazime Nishikawa; Atsuo Taniguchi; Takanori Ueda; Takahiro Yamauchi; Shin Fujimori; Ikuo Mineo; Hisashi Yamanaka
Abstract Objective. We assessed the efficacy and adverse effects of febuxostat in male hyperuricemia patients. Subjects and methods. This was a 12-week, multicenter, open-label, uncontrolled study. The enrolled subjects were 89 hyperuricemic male patients (12 overexcretors, 56 normal excretors, and 21 underexcretors). The endpoint was percent change in serum urate level. Results. The concentration of urate in serum before and 12 weeks after beginning administration of febuxostat in the overexcretors was 9.34 ± 1.48 and 5.59 ± 1.17 mg/dl, respectively, while those were 8.59 ± 1.24 and 5.41 ± 1.35 mg/dl, respectively, in the normal excretors, and 8.29 ± 1.01and 5.11 ± 1.71 mg/dl, respectively, in the underexcretors. After 12 weeks, the rate of change in serum urate after beginning administration of febuxostat was − 0.384 ± 0.186 in the overexcretors, − 0.368 ± 0.128 in the normal excretors, and − 0.365 ± 0.217 in the underexcretors, with no significant differences among them. A common adverse event related to febuxostat was gout flare. Conclusion. Febuxostat effectively reduced the concentration of urate in serum in hyperuricemic patients regardless of the level of uric acid excreted in urine without severe adverse effects.
RMD Open | 2017
Toshihide Higashino; Tappei Takada; Hirofumi Nakaoka; Yu Toyoda; Blanka Stiburkova; Hiroshi Miyata; Yuki Ikebuchi; Hiroshi Nakashima; Seiko Shimizu; Makoto Kawaguchi; Masayuki Sakiyama; Akiyoshi Nakayama; Airi Akashi; Yuki Tanahashi; Yusuke Kawamura; Takahiro Nakamura; Kenji Wakai; Rieko Okada; Ken Yamamoto; Kazuyoshi Hosomichi; Tatsuo Hosoya; Kimiyoshi Ichida; Hiroshi Ooyama; Hiroshi Suzuki; Ituro Inoue; Tony R. Merriman; Nariyoshi Shinomiya; Hirotaka Matsuo
Objective Previous studies have suggested an association between gout susceptibility and common dysfunctional variants in ATP-binding cassette transporter subfamily G member 2/breast cancer resistance protein (ABCG2/BCRP), including rs72552713 (Q126X) and rs2231142 (Q141K). However, the association of rare ABCG2 variants with gout is unknown. Therefore, we investigated the effects of rare ABCG2 variants on gout susceptibility in this study. Methods We sequenced the exons of ABCG2 in 480 patients with gout and 480 healthy controls (Japanese males). We also performed functional analyses of non-synonymous variants of ABCG2 and analysed the correlation between urate transport function and scores from the protein prediction algorithms (Sorting Intolerant from Tolerant (SIFT) and Polymorphism Phenotyping v2 (PolyPhen-2)). Stratified association analyses and multivariate logistic regression analysis were performed to evaluate the effects of rare and common ABCG2 variants on gout susceptibility. Results We identified 3 common and 19 rare non-synonymous variants of ABCG2. SIFT scores were significantly correlated with the urate transport function, although some ABCG2 variants showed inconsistent scores. When the effects of common variants were removed by stratified association analysis, the rare variants of ABCG2 were associated with a significantly increased risk of gout (OR=3.2, p=6.4×10−3). Multivariate logistic regression analysis revealed that the size effect of these rare ABCG2 variants (OR=2.7, p=3.0×10−3) was similar to that of the common variants, Q126X (OR=3.4, p=3.2×10−6) and Q141K (OR=2.3, p=2.7×10−16). Conclusions This study revealed that multiple common and rare variants of ABCG2 are independently associated with gout. These results could support both the ‘Common Disease, Common Variant’ and ‘Common Disease, Multiple Rare Variant’ hypotheses for the association between ABCG2 and gout susceptibility.
Scientific Reports | 2018
Tappei Takada; Takashi Yamamoto; Hirotaka Matsuo; J. K. Tan; Keiko Ooyama; Masayuki Sakiyama; Hiroshi Miyata; Yuji Yamanashi; Yu Toyoda; Toshihide Higashino; Akiyoshi Nakayama; A. Nakashima; Nariyoshi Shinomiya; Kimiyoshi Ichida; Hiroshi Ooyama; Shin Fujimori; Hiroaki Suzuki
Chronic kidney disease (CKD) patients accumulate uremic toxins in the body, potentially require dialysis, and can eventually develop cardiovascular disease. CKD incidence has increased worldwide, and preventing CKD progression is one of the most important goals in clinical treatment. In this study, we conducted a series of in vitro and in vivo experiments and employed a metabolomics approach to investigate CKD. Our results demonstrated that ATP-binding cassette transporter subfamily G member 2 (ABCG2) is a major transporter of the uremic toxin indoxyl sulfate. ABCG2 regulates the pathophysiological excretion of indoxyl sulfate and strongly affects CKD survival rates. Our study is the first to report ABCG2 as a physiological exporter of indoxyl sulfate and identify ABCG2 as a crucial factor influencing CKD progression, consistent with the observed association between ABCG2 function and age of dialysis onset in humans. The above findings provided valuable knowledge on the complex regulatory mechanisms that regulate the transport of uremic toxins in our body and serve as a basis for preventive and individualized treatment of CKD.
BMC Medical Genetics | 2018
Masayuki Sakiyama; Hirotaka Matsuo; Hirofumi Nakaoka; Yusuke Kawamura; Makoto Kawaguchi; Toshihide Higashino; Akiyoshi Nakayama; Airi Akashi; Jun Ueyama; Takaaki Kondo; Kenji Wakai; Yutaka Sakurai; Ken Yamamoto; Hiroshi Ooyama; Nariyoshi Shinomiya
BackgroundGout is a common disease resulting from hyperuricemia which causes acute arthritis. A recent genome-wide association study (GWAS) of gout identified three new loci for gout in Han Chinese: regulatory factor X3 (RFX3), potassium voltage-gated channel subfamily Q member 1 (KCNQ1), and breast carcinoma amplified sequence 3 (BCAS3). The lack of any replication studies of these three loci using other population groups prompted us to perform a replication study with Japanese clinically defined gout cases and controls.MethodsWe genotyped the variants of RFX3 (rs12236871), KCNQ1 (rs179785) and BCAS3 (rs11653176) in 723 Japanese clinically defined gout cases and 913 controls by TaqMan method. rs179785 of KCNQ1 is also evaluated by direct sequencing because of difficulties of its genotyping by TaqMan method.ResultsAlthough the variants of RFX3 and BCAS3 were clearly genotyped by TaqMan method, rs179785 of KCNQ1 was not, because rs179785 (A/G) of KCNQ1 is located at the last nucleotide (“A”) of the 12-bp deletion variant (rs200562977) of KCNQ1. Therefore, rs179785 and rs200562977 of KCNQ1 were genotyped by direct sequencing in all samples. Moreover, by direct sequencing with the same primers, we were able to evaluate the genotypes of rs179784 of KCNQ1 which shows strong linkage disequilibrium with rs179785 (D’ = 1.0 and r2 = 0.99). rs11653176, a common variant of BCAS3, showed a significant association with gout (P = 1.66 × 10− 3; odds ratio [OR] = 0.80); the direction of effect was the same as that seen in the previous Han Chinese GWAS. Two variants of KCNQ1 (rs179785 and rs179784) had a nominally significant association (P = 0.043 and 0.044; OR = 0.85 and 0.86, respectively), but did not pass the significance threshold for multiple hypothesis testing using the Bonferroni correction. On the other hand, rs200562977 of KCNQ1 and rs12236871 of RFX3 did not show any significant association with gout.ConclusionBCAS3 is a coactivator of estrogen receptor alpha, and the influence of estrogen to serum uric acid level is well known. Our present replication study, as did the previous gout GWAS, demonstrated the common variant of BCAS3 to be associated with gout susceptibility.
Modern Rheumatology | 2017
Hiraku Ogata; Hirotaka Matsuo; Masayuki Sakiyama; Toshihide Higashino; Makoto Kawaguchi; Akiyoshi Nakayama; Mariko Naito; Hiroshi Ooyama; Kimiyoshi Ichida; Nariyoshi Shinomiya
Department of Integrative Physiology and Bio-Nano Medicine, National Defense Medical College, Tokorozawa, Saitama, Japan, Department of Preventive Medicine, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan, Ryougoku East Gate Clinic, Tokyo, Japan, Department of Pathophysiology, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan, and Division of Kidney and Hypertension, Jikei