Hiroshi Suemizu
Central Institute for Experimental Animals
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Hiroshi Suemizu.
Nature | 2009
Erika Sasaki; Hiroshi Suemizu; Akiko Shimada; Kisaburo Hanazawa; Ryo Oiwa; Michiko Kamioka; Ikuo Tomioka; Yusuke Sotomaru; Reiko Hirakawa; Tomoo Eto; Seiji Shiozawa; Takuji Maeda; Mamoru Ito; Ryoji Ito; Chika Kito; Chie Yagihashi; Kenji Kawai; Hiroyuki Miyoshi; Yoshikuni Tanioka; Norikazu Tamaoki; Sonoko Habu; Hideyuki Okano; Tatsuji Nomura
The common marmoset (Callithrix jacchus) is increasingly attractive for use as a non-human primate animal model in biomedical research. It has a relatively high reproduction rate for a primate, making it potentially suitable for transgenic modification. Although several attempts have been made to produce non-human transgenic primates, transgene expression in the somatic tissues of live infants has not been demonstrated by objective analyses such as polymerase chain reaction with reverse transcription or western blots. Here we show that the injection of a self-inactivating lentiviral vector in sucrose solution into marmoset embryos results in transgenic common marmosets that expressed the transgene in several organs. Notably, we achieved germline transmission of the transgene, and the transgenic offspring developed normally. The successful creation of transgenic marmosets provides a new animal model for human disease that has the great advantage of a close genetic relationship with humans. This model will be valuable to many fields of biomedical research.
Stem Cells | 2005
Erika Sasaki; Kisaburo Hanazawa; Ryo Kurita; Akira Akatsuka; Takahito Yoshizaki; Hajime Ishii; Yoshikuni Tanioka; Yasuyuki Ohnishi; Hiroshi Suemizu; Ayako Sugawara; Norikazu Tamaoki; Kiyoko Izawa; Yukoh Nakazaki; Hiromi Hamada; Hirofumi Suemori; Shigetaka Asano; Norio Nakatsuji; Hideyuki Okano; Kenzaburo Tani
The successful establishment of human embryonic stem cell (hESC) lines has inaugurated a new era in regenerative medicine by facilitating the transplantation of differentiated ESCs to specific organs. However, problems with the safety and efficacy of hESC therapy in vivo remain to be resolved. Preclinical studies using animal model systems, including nonhuman primates, are essential to evaluate the safety and efficacy of hESC therapies. Previously, we demonstrated that common marmosets are suitable laboratory animal models for preclinical studies of hematopoietic stem cell therapies. As this animal model is also applicable to preclinical trials of ESC therapies, we have established novel common marmoset ESC (CMESC) lines. To obtain marmoset embryos, we developed a new embryo collection system, in which blastocysts can be obtained every 3 weeks from each marmoset pair. The inner cell mass was isolated by immunosurgery and plated on a mouse embryonic feeder layer. Some of the CMESC lines were cultured continuously for more than 1 year. These CMESC lines showed alkaline phosphatase activity and expressed stage‐specific embryonic antigen (SSEA)‐3, SSEA‐4, TRA‐1‐60, and TRA‐1‐81. On the other hand, SSEA‐1 was not detected. Furthermore, our novel CMESCs are pluripotent, as evidenced by in vivo teratoma formation in immunodeficient mice and in vitro differentiation experiments. Our established CMESC lines and the common marmoset provide an excellent experimental model system for understanding differentiation mechanisms, as well as the development of regenerative therapies using hESCs.
Proceedings of the National Academy of Sciences of the United States of America | 2002
Hiroshi Suemizu; Mirjana Radosavljevic; Minoru Kimura; Sotaro Sadahiro; Shinichi Yoshimura; Seiamak Bahram; Hidetoshi Inoko
The MHC class I chain-related MICA molecule is a stress-induced, highly polymorphic, epithelia-specific, membrane-bound glycoprotein interacting with the activating NK cell receptor NKG2D and/or gut-enriched Vδ1-bearing γδ T cells. We have previously reported the presence of a MICA transmembrane-encoded short-tandem repeat harboring a peculiar allele, A5.1, characterized by a frame shift mutation leading to a premature intradomain stop codon, thus denying the molecule of its 42-aa cytoplasmic tail. Given that this is the most common population-wide MICA allele found, we set out to analyze the functional consequences of cytoplasmic tail deletion. Here, we show native expression of MICA at the basolateral surface of human intestinal epithelium, the site of putative interaction with intraepithelial T and NK lymphocytes. We then demonstrate, in polarized epithelial cells, that although the full-length MICA protein is sorted to the basolateral membrane, the cytoplasmic tail-deleted construct as well as the naturally occurring A5.1 allele are aberrantly transported to the apical surface. Site-directed mutagenesis identified the cytoplasmic tail-encoded leucine-valine dihydrophobic tandem as the basolateral sorting signal. Hence, the physiological location of MICA within epithelial cells is governed by its cytoplasmic tail, implying impairment in A5.1 homozygous individuals, perhaps relevant to the immunological surveillance exerted by NK and T lymphocytes on epithelial malignancies.
Genes to Cells | 2010
Ikuo Tomioka; Takuji Maeda; Hiroko Shimada; Kenji Kawai; Yohei Okada; Hiroshi Igarashi; Ryo Oiwa; Tsuyoshi Iwasaki; Mikio Aoki; Toru Kimura; Seiji Shiozawa; Haruka Shinohara; Hiroshi Suemizu; Erika Sasaki; Hideyuki Okano
Although embryonic stem (ES) cell–like induced pluripotent stem (iPS) cells have potential therapeutic applications in humans, they are also useful for creating genetically modified human disease models in nonhuman primates. In this study, we generated common marmoset iPS cells from fetal liver cells via the retrovirus‐mediated introduction of six human transcription factors: Oct‐3/4, Sox2, Klf4, c‐Myc, Nanog, and Lin28. Four to five weeks after introduction, several colonies resembling marmoset ES cells were observed and picked for further expansion in ES cell medium. Eight cell lines were established, and validation analyses of the marmoset iPS cells followed. We detected the expression of ES cell–specific surface markers. Reverse transcription‐PCR showed that these iPS cells expressed endogenous Oct‐3/4, Sox2, Klf4, c‐Myc, Nanog and Lin28 genes, whereas all of the transgenes were silenced. Karyotype analysis showed that two of three iPS cell lines retained a normal karyotype after a 2‐month culture. Both embryoid body and teratoma formation showed that marmoset iPS cells had the developmental potential to give rise to differentiated derivatives of all three primary germ layers. In summary, we generated marmoset iPS cells via the transduction of six transcription factors; this provides a powerful preclinical model for studies in regenerative medicine.
Biochemical and Biophysical Research Communications | 2008
Hiroshi Suemizu; Masami Hasegawa; Kenji Kawai; Kenji Taniguchi; Makoto Monnai; Masatoshi Wakui; Makoto Suematsu; Mamoru Ito; Gary Peltz; Masato Nakamura
Severely immunodeficient NOD/Shi-scid IL2Rg(null) (NOG) mice are used as recipients for human tissue transplantation, which produces chimeric mice with various types of human tissue. NOG mice expressing transgenic urokinase-type plasminogen activator in the liver (uPA-NOG) were produced. Human hepatocytes injected into uPA-NOG mice repopulated the recipient livers with human cells. The uPA-NOG model has several advantages over previously produced chimeric mouse models of human liver: (1) the severely immunodeficient NOG background enables higher xenogeneic cell engraftment; (2) the absence of neonatal lethality enables mating of homozygotes, which increased the efficacy of homozygote production; and (3) donor xenogeneic human hepatocytes could be readily transplanted into young uPA-NOG mice, which provide easier surgical manipulation and improved recipient survival.
Journal of Immunology | 2013
Ryoji Ito; Takeshi Takahashi; Ikumi Katano; Kenji Kawai; Tsutomu Kamisako; Tomoyuki Ogura; Miyuki Ida-Tanaka; Hiroshi Suemizu; Satoshi Nunomura; Chisei Ra; Akio Mori; Sadakazu Aiso; Mamoru Ito
The development of animal models that mimic human allergic responses is crucial to study the pathophysiology of disease and to generate new therapeutic methodologies. Humanized mice reconstituted with human immune systems are essential to study human immune reactions in vivo and are expected to be useful for studying human allergies. However, application of this technology to the study of human allergies has been limited, largely because of the poor development of human myeloid cells, especially granulocytes and mast cells, which are responsible for mediating allergic diseases, in conventional humanized mice. In this study, we developed a novel transgenic (Tg) strain, NOD/Shi-scid-IL2rγnull (NOG), bearing human IL-3 and GM-CSF genes (NOG IL-3/GM–Tg). In this strain, a large number of human myeloid cells of various lineages developed after transplantation of human CD34+ hematopoietic stem cells. Notably, mature basophils and mast cells expressing FcεRI were markedly increased. These humanized NOG IL-3/GM–Tg mice developed passive cutaneous anaphylaxis reactions when administered anti–4-hydroxy-3-nitrophenylacetyl IgE Abs and 4-hydroxy-3-nitrophenylacetyl. More importantly, a combination of serum from Japanese cedar pollinosis patients and cedar pollen extract also elicited strong passive cutaneous anaphylaxis responses in mice. Thus, to our knowledge, our NOG IL-3/GM–Tg mice are the first humanized mouse model to enable the study of human allergic responses in vivo and are excellent tools for preclinical studies of allergic diseases.
Analytical and Bioanalytical Chemistry | 2011
Akiko Kubo; Mitsuyo Ohmura; Masatoshi Wakui; Takahiro Harada; Shigeki Kajihara; Kiyoshi Ogawa; Hiroshi Suemizu; Masato Nakamura; Mitsutoshi Setou; Makoto Suematsu
Analyses of energy metabolism in human cancer have been difficult because of rapid turnover of the metabolites and difficulties in reducing time for collecting clinical samples under surgical procedures. Utilization of xenograft transplantation of human-derived colon cancer HCT116 cells in spleens of superimmunodeficient NOD/SCID/IL-2Rγnull (NOG) mice led us to establish an experimental model of hepatic micrometastasis of the solid tumor, whereby analyses of the tissue sections collected by snap-frozen procedures through newly developed microscopic imaging mass spectrometry (MIMS) revealed distinct spatial distribution of a variety of metabolites. To perform intergroup comparison of the signal intensities of metabolites among different tissue sections collected from mice in fed states, we combined matrix-assisted laser desorption/ionization time-of-flight imaging mass spectrometry (MALDI–TOF-IMS) and capillary electrophoresis–mass spectrometry (CE–MS), to determine the apparent contents of individual metabolites in serial tissue sections. The results indicated significant elevation of ATP and energy charge in both metastases and the parenchyma of the tumor-bearing livers. To note were significant increases in UDP-N-acetyl hexosamines, and reduced and oxidized forms of glutathione in the metastatic foci versus the liver parenchyma. These findings thus provided a potentially important method for characterizing the properties of metabolic systems of human-derived cancer and the host tissues in vivo.
American Journal of Pathology | 2014
Tanuja L. Gutti; Jaclyn Knibbe; Edward Makarov; Jinjin Zhang; Govardhana Rao Yannam; Santhi Gorantla; Yimin Sun; David F. Mercer; Hiroshi Suemizu; James L. Wisecarver; Natalia A. Osna; Tatiana K. Bronich; Larisa Y. Poluektova
Human-specific HIV-1 and hepatitis co-infections significantly affect patient management and call for new therapeutic options. Small xenotransplantation models with human hepatocytes and hematolymphoid tissue should facilitate antiviral/antiretroviral drug trials. However, experience with mouse strains tested for dual reconstitution is limited, with technical difficulties such as risky manipulations with newborns and high mortality rates due to metabolic abnormalities. The best animal strains for hepatocyte transplantation are not optimal for human hematopoietic stem cell (HSC) engraftment, and vice versa. We evaluated a new strain of highly immunodeficient nonobese diabetic/Shi-scid (severe combined immunodeficiency)/IL-2Rγc(null) (NOG) mice that carry two copies of the mouse albumin promoter-driven urokinase-type plasminogen activator transgene for dual reconstitution with human liver and immune cells. Three approaches for dual reconstitution were evaluated: i) freshly isolated fetal hepatoblasts were injected intrasplenically, followed by transplantation of cryopreserved HSCs obtained from the same tissue samples 1 month later after treosulfan conditioning; ii) treosulfan conditioning is followed by intrasplenic simultaneous transplantation of fetal hepatoblasts and HSCs; and iii) transplantation of mature hepatocytes is followed by mismatched HSCs. The long-term dual reconstitution was achieved on urokinase-type plasminogen activator-NOG mice with mature hepatocytes (not fetal hepatoblasts) and HSCs. Even major histocompatibility complex mismatched transplantation was sustained without any evidence of hepatocyte rejection by the human immune system.
Journal of Pharmacology and Experimental Therapeutics | 2013
Toshihiko Nishimura; Yajing Hu; Manhong Wu; Edward A. Pham; Hiroshi Suemizu; Menashe Elazar; Michael Liu; Ramazan Idilman; Cihan Yurdaydin; Peter W Angus; C. Stedman; Brian Murphy; Jeffrey S. Glenn; Masato Nakamura; Tatsuji Nomura; Yuan Chen; Ming Zheng; William L. Fitch; Gary Peltz
Interspecies differences in drug metabolism have made it difficult to use preclinical animal testing data to predict the drug metabolites or potential drug-drug interactions (DDIs) that will occur in humans. Although chimeric mice with humanized livers can produce known human metabolites for test substrates, we do not know whether chimeric mice can be used to prospectively predict human drug metabolism or a possible DDI. Therefore, we investigated whether they could provide a more predictive assessment for clemizole, a drug in clinical development for the treatment of hepatitis C virus (HCV) infection. Our results demonstrate, for the first time, that analyses performed in chimeric mice can correctly identify the predominant human drug metabolite before human testing. The differences in the rodent and human pathways for clemizole metabolism were of importance, because the predominant human metabolite was found to have synergistic anti-HCV activity. Moreover, studies in chimeric mice also correctly predicted that a DDI would occur in humans when clemizole was coadministered with a CYP3A4 inhibitor. These results demonstrate that using chimeric mice can improve the quality of preclinical drug assessment.
Cancer Science | 2007
Tetsuo Sugahara; Yzumi Yamashita; Masahito Shinomi; Banri Yamanoha; Hiroyoshi Iseki; Akihiko Takeda; Yasushi Okazaki; Yoshihide Hayashizaki; Kenji Kawai; Hiroshi Suemizu; Toshiwo Andoh
We report isolation of a novel tumor‐reversing gene, tentatively named SVS‐1, encoding a protein of 820 amino acids with localization on the plasma membrane as a type I transmembrane protein. The gene was found among those downregulated in the activated oncogene‐v‐K‐ras‐transformed NIH3T3 cells, Ki3T3, with tumorigenic phenotype. SVS‐1 protein harbors several functional domains inherent to adhesion molecules. Histochemical staining of mouse tissues using antibody raised against the protein showed the expression of the protein in restricted regions and cells, for example, strongly positive in apical membranes of epithelial cells in renal tubules and bronchial tubes. The protein inducibly expressed in human fibrosarcoma HT1080 cells and cervical carcinoma HeLa cells was found to be localized primarily on the plasma membrane, as stained with antibodies against FLAG tag in the N‐terminus and against the C‐terminal peptide of the protein. Expression of the protein in cells induced a variety of biological effects on cancer cells: detachment from the substratum and aggregation of cells and growth inhibition in HeLa cells, but no inhibition in non‐tumorigenic mouse NIH3T3 cells. Inhibition of clonogenicity, anchorage‐independent growth, migration and invasion through Matrigel was also observed. Taken together these results suggest that the SVS‐1 gene is a possible tumor‐reversing gene. (Cancer Sci 2007; 98: 900–908)