Hiroshi Tobe
Kyoto University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Hiroshi Tobe.
American Journal of Botany | 2006
Akiko Sogo; Hiroshi Tobe
In contrast to most angiosperms, in which fertilization occurs 1 or 2 days after pollination, in some plant orders, including the Fagales, fertilization is delayed from 4 days to more than 1 year, raising questions regarding why fertilization is delayed and where and how pollen tubes remain in the pistil during the delay. To answer these questions, we investigated pollen-tube growth in pistils of Fagus japonica (Fagaceae), which are tricarpellate and have six ovules, using light, fluorescence, and scanning electron microscopy. The ovules were immature at the time of pollination and required 5 weeks to become fully developed. During this 5 weeks, pollen tubes grew from the stigma to the embryo sac in association with the development of ovules and intermittently in three steps with two growth-cessation sites, i.e., on the funicle and near the micropyle. The number of pollen tubes was gradually reduced from many to one at the two growth-cessation sites, and fertilization occurred in one ovule that apparently developed earlier than the others in the pistil. Thus, delayed fertilization plays an important role in gametophyte competition and selection leading to nonrandom fertilization. Intermittent pollen-tube growth is also likely widespread in angiosperms because it is known in other Fagales and an unrelated order Garryales.
American Journal of Botany | 2007
Masumi Kono; Hiroshi Tobe
Among the Cycadales (Cycadaceae and Zamiaceae), the Zamiaceae are known to be insect-pollinated. In contrast, the Cycadaceae are still considered wind-pollinated, although some doubt has been cast on several species, including Cycas revoluta. Using a large population of C. revoluta on Yonaguni Island (Okinawa, Japan), we performed exclusion experiments, documented insects from male and female cones, and analyzed the morphology of the apical part of the ovule to determine the pollination method of this species. Insect exclusion resulted in a notable reduction in seed set, except in a few individuals growing near male cones. The amount of airborne pollen was abundant within a 2-m radius of male cones but decreased markedly beyond this distance. Pollen grains of C. revoluta were found on the body of Carpophilus chalybeus (Nitidulidae, Coleoptera), one of a few species of insects collected from both male cones and female cones far from males. We conclude that C. revoluta relies on both wind (anemophily) and insect pollination (entomophily), although such anemophily is restricted to female trees growing within a 2-m radius of male trees. The nitidulids are not host specific to this cycad and primarily feed on plant tissue but serve as pollinators during pollen release. Cycas revoluta appears to be in an initial mode of animal pollination, as opposed to the host-specific insect pollination observed in most Zamiaceae.
Journal of Plant Research | 2003
Kweon Heo; Yukitoshi Kimoto; Magaly Riveros; Hiroshi Tobe
Embryological characters of Siparunaceae, which are poorly understood, were studied on the basis of two constituent genera, an African Glossocalyx and a South American Siparuna, to better understand their evolution within Laurales. These two genera have many embryological characteristics in common with the other lauralean families. Noticeably, they share the multi-celled ovule archesporium (uncertain in Glossocalyx) as a synapomorphy with all the other lauralean families except Lauraceae, the anthers dehisced by valves as a synspomorphy with all the other lauralean families except Calycanthaceae and Monimiaceae, and the bisporangiate anther as a synapomorphy with Gomortegaceae and Atherospermataceae. Siparunaceae are, however, distinct from all other laularean families in having unitegmic ovules that were derived from bitegmic ovules, probably due to an elimination of the outer integument. Likewise, the lack of the testa (i.e., developed outer integument), the endotegmic seed coat, and the perichalazal seed at maturity are also characteristics of Siparunaceae. Within the family, Siparuna differs from Glossocalyx in having plural tetrads of megaspores and plural, starchy-rich, one-nucleate, tubular embryo sacs (autapomorphies). On the other hand, Glossocalyx is characterized by having bilaterally flattened seeds (autapomorphy). Although functional aspects of those autapomorphies are uncertain, both Glossocalyx and Siparuna show evolution in different embryological characters.
Journal of Plant Research | 2004
Akiko Sogo; Junko Noguchi; Tanguy Jaffré; Hiroshi Tobe
For a better understanding of pollen-tube guidance in relation to pollen-pistil interaction, we investigated the mode of pollen-tube growth in pistils of Casuarina equisetifolia, a monoecious, wind-pollinated species that undergoes chalazogamous fertilization. The pistil is bicarpellate, but only one of the two carpels develops with two ovules. One of these ovules develops more than four embryo sacs. Pistils usually require more than 1xa0month to reach maturity after pollen grains have been deposited on the stigmas. During that period, pollen-tube growth proceeds discontinuously in five distinct steps that lead up to fertilization: (1) from the stigma to the upper region of the style, (2) from the upper region of the style to a septum in the ovary, (3) from the septum to the surface of the funiculus, (4) from the funiculus to chalaza in the ovule, and (5) from the chalaza to an egg apparatus. Probably because of competitive interaction between male and female gametophytes (or ovules), one pollen tube is selected from among many during the first step (just before the second step), one ovule from the two during the second and third steps, and one embryo sac from more than four during the fourth and fifth steps. On the basis of our results, erroneous drawings and explanations reported in earlier publications on chalazogamy in Casuarinaceae should be brought into question.
Journal of Plant Research | 2003
Jung Sung Kim; Jae-Hong Pak; Bong-Bo Seo; Hiroshi Tobe
Although the Dendranthema zawadskii complex has been known to comprise a series of polyploids (4×, 6×, 8×), we found diploid individuals (with 2n=18) to occur in four populations of D. zawadskii var. latilobum in the southern region of Korea. Karyotypes of metaphase chromosomes were diverse because numbers of metacentric, submetacentric, and acrocentric chromosomes differ even within a population. A total of 17 karyotypes were found in 31 diploid individuals collected from the four populations. The karyotypes were also diverse in the presence or absence of chromosomes with a secondary constriction on a short or long arm and, if present, in the number of such chromosomes. They were further diverse in the presence or absence of non-homologous chromosome(s), the presence or absence of a chromosome with a satellite, and, if present, how many and where satellites are present. Almost the same pattern of diversity was found in diploid individuals (with 2n=18) of D. boreale and D. indicum as well, irrespective of whether they occur together with D. zawadskii var. latilobum or not. Structural features of chromosomes in the variously different karyotypes suggest that reciprocal translocation and the hybridization between individuals with different karyotypes had repeatedly occurred not only in D. zawadskii var. latilobum, but also in D. boreale and D. indicum. Morphologically intermediate individuals between D. zawadskii var. latilobum and D. indicum suggests that the hybridization occur with different species as well.
Plant Systematics and Evolution | 2006
Akiko Sogo; Hiroshi Tobe
In contrast to a majority of angiosperms showing porogamous fertilization, several fagalean families such as Betulaceae and Casuarinaceae are known to show chalazogamy, where fertilization is effected by a pollen tube passing through the chalaza instead of the micropyle. Our developmental study of pollen-tube growth in pistils of Myrica rubra (Myricaceae, Fagales) further shows that pollen tubes reached the nucellus before the micropyle is formed by the integument. Since fertilized ovules appeared as if the pollen tube had passed through the micropyle for fertilization, we propose the new term `pseudoporogamy to this mode. By mapping diverse modes of fertilization, dependent or independent of the micropyle, onto a phylogenetic tree of Fagales, it appears that fertilization mode evolved from porogamy to chalazogamy and then further from chalazogamy to pseudoporogamy. Possible reasons for the evolution of fertilization modes independent of the micropyle in Fagales are discussed.
Journal of Plant Research | 2008
Hiroshi Tobe
Japonolirion osense, the sole species of the genus, endemic to Japan, which is placed together with Petrosavia in the Petrosaviaceae and the order Petrosaviales, is still poorly known with respect to systematic characters. Here I present an embryological study of the anther, ovule, and seed of J. osense. Japonolirion is characterized by a glandular anther tapetum, simultaneous cytokinesis in the microspore mother cell, two-celled mature pollen grains, anatropous and crassinucellate ovules, a two-cell-layered nucellar cap formed early in ovule development, antipodal cells hypertrophied in post-fertilization stages, the ab initio cellular mode of endosperm formation, and exotegmic seeds. Comparisons with the basal monocots Acorus (Acorales) and Araceae (Alismatales), and with the more derived monocots Nartheciaceae (Dioscoreales) and Velloziaceae/Triuridaceae (Pandanales), showed that Japonolirion is clearly distinct from those basal and more derived monocots, supporting a distinct position for Petrosaviaceae or Petrosaviales within the monocots. Extensive comparisons further suggest that the two-cell-layered nucellar cap, whose cells are rich in cytoplasm at the time of fertilization in Japonolirion and thus obviously function as the obturator, is likely to be a common characteristic of the basal monocots and may even be a link with the magnoliids.
American Journal of Botany | 2008
Hiroshi Tobe; Peter H. Raven
Koeberlinia, comprising a single xerophytic species K. spinosa, had previously been placed in various families, mainly Capparaceae. Current molecular evidence now places it in its own family Koeberliniaceae, thought to be related to the Bataceae/Salvadoraceae among the 17 other families of the Brassicales. We investigated 55 embryological characters of the genus, most of which are not understood yet, and thereby assessed its systematic relationships. Koeberlinia has many embryological features in common with the Capparaceae and seven other core-Brassicalean families (i.e., Brassicaceae, Cleomaceae, Emblingiaceae, Gyrostemonaceae, Pentadiplandraceae, Resedaceae, and Tovariaceae), specifically by possessing a campylotropous ovule with a nonmultiplicative (two-cell-layered) outer integument, reniform seeds with a curved embryo, and a fibrous exotegmen in the mature seed coat. However, Koeberlinia is clearly distinguished from them by a tenuinucellate rather than crassinucellate ovule as previously reported, markedly enlarged apical nucellar epidermal cells, and an exotestal seed coat. Embryologically, Koeberlinia resembles neither the Bataceae nor the Salvadoraceae, although only limited embryological data are available for these two families. Embryological evidence thus favors its joining the core Brassicales, but additional molecular analyses and embryological studies on the missing data of the Bataceae and Salvadoraceae are needed for final confirmation of its phylogenetic position.
International Journal of Plant Sciences | 2006
Akiko Sogo; Hiroshi Tobe
In Eucommia ulmoides, the only extant species of Eucommiaceae, fertilization is delayed for several weeks after pollination. Based on a developmental study of pollen tube growth in the E. ulmoides pistil, we show that during days 11–13 after pollination, pollen tubes grow intermittently in three steps, in close association with the development of ovules: (1) from the stigma to within the placental tissue, (2) from within the placenta through the funiculus into the tissue of an enlarged integumental tip, and (3) from the integumental tip to the mature embryo sac. The number of pollen tubes decreased from many to several during the second step and from several to only one in the third step. Thus, the three‐step pollen tube growth mode plays a role in pollen selection for fertilization. Occasionally, a long micropylar canal promoted the reduction in the number of pollen tubes from two or three to one. A comparison with the diverse modes of pollen tube growth in pistils of species of Fagales, which also demonstrate delayed fertilization, showed that the mode of E. ulmoides is distinct from these modes. This unique mode might have contributed to the survival of this species from the early Eocene.
Journal of Plant Research | 2004
Akiko Sogo; Tanguy Jaffré; Hiroshi Tobe
AbstractA unique mode of fertilization called “chalazogamy”, whereby the pollen tube passes through the chalaza instead of the micropyle, is known in several species of derived genera in Casuarinaceae. In this paper we report the occurrence of chalazogamy in Gymnostoman(G. poissonianum), the most primitive genus in the family. We also show that the pollen tube grows discontinuously from the stigma to ovules in about 3xa0months. At the time of pollination, the ovules have not yet formed in the ovary, and require a long time to develop. The pollen tube(s) lie in a zigzag line and are branched in the upper region of the style, and their growth is arrested there until the ovary develops further. Studies of the relevant literature further revealed discontinuous pollen-tube growth in relation to a prolonged period between pollination and fertilization, as well as chalazogamy, in Betulaceae, Juglandaceae and/or Fagaceae that are closely related to Casuarinaceae. This feature may have derived early in the evolution of Fagales.