Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Hirotaka Masuda is active.

Publication


Featured researches published by Hirotaka Masuda.


Molecular Human Reproduction | 2010

Adult stem cells in the endometrium

Caroline E. Gargett; Hirotaka Masuda

Rare cells with adult stem cell activity were recently discovered in human endometrium. Endometrial stem/progenitor cell candidates include epithelial, mesenchymal and endothelial cells, and all may contribute to the rapid endometrial regeneration following menstruation, rather than a single candidate. Endometrial mesenchymal stem-like cells (eMSC) are prospectively isolated as CD146(+)PDGF-Rβ(+) cells and are found in both basalis and functionalis as perivascular cells. Epithelial progenitor cells are detected in colony forming unit assays but their identity awaits elucidation. They are postulated to reside in the basalis in gland bases. Endometrial stem/progenitor cells may be derived from endogenous stem cells, but emerging evidence suggests a bone marrow contribution. Endometrial endothelial progenitor cells are detected as side population cells, which express several endothelial cell markers and differentiate into endometrial glandular epithelial, stromal and endothelial cells. Investigating endometrial stem cell biology is crucial to understanding normal endometrial physiology and to determine their roles in endometrial proliferative diseases. The nature of endometriosis suggests that initiation of ectopic endometrial lesions involves endometrial stem/progenitor cells, a notion compatible with Sampsons retrograde menstruation theory and supported by the demonstration of eMSC in menstrual blood. Evidence of cancer stem cells (CSC) in endometrial cancer indicates that new avenues for developing therapeutic options targeting CSC may become available. We provide an overview of the accumulating evidence for endometrial stem/progenitor cells and their possible roles in endometrial proliferative disorders, and discuss the unresolved issues.


PLOS ONE | 2010

Stem cell-like properties of the endometrial side population: Implication in endometrial regeneration

Hirotaka Masuda; Yumi Matsuzaki; Emi Hiratsu; Masanori Ono; Takashi Nagashima; Takashi Kajitani; Toru Arase; Hideyuki Oda; Hiroshi Uchida; Hironori Asada; Mamoru Ito; Yasunori Yoshimura; Tetsuo Maruyama; Hideyuki Okano

Background The human endometrium undergoes cyclical regeneration throughout a womans reproductive life. Ectopic implantation of endometrial cells through retrograde menstruation gives rise to endometriotic lesions which affect approximately 10% of reproductive-aged women. The high regenerative capacity of the human endometrium at eutopic and ectopic sites suggests the existence of stem/progenitor cells and a unique angiogenic system. The objective of this study was to isolate and characterize putative endometrial stem/progenitor cells and to address how they might be involved in the physiology of endometrium. Methodology/Principal Findings We found that approximately 2% of the total cells obtained from human endometrium displayed a side population (SP) phenotype, as determined by flow cytometric analysis of Hoechst-stained cells. The endometrial SP (ESP) cells exhibited preferential expression of several endothelial cell markers compared to endometrial main population (EMP) cells. A medium specific for endothelial cell culture enabled ESP cells to proliferate and differentiate into various types of endometrial cells, including glandular epithelial, stromal and endothelial cells in vitro, whereas in the same medium, EMP cells differentiated only into stromal cells. Furthermore, ESP cells, but not EMP cells, reconstituted organized endometrial tissue with well-delineated glandular structures when transplanted under the kidney capsule of severely immunodeficient mice. Notably, ESP cells generated endothelial cells that migrated into the mouse kidney parenchyma and formed mature blood vessels. This potential for in vivo angiogenesis and endometrial cell regeneration was more prominent in the ESP fraction than in the EMP fraction, as the latter mainly gave rise to stromal cells in vivo. Conclusions/Significance These results indicate that putative endometrial stem cells are highly enriched in the ESP cells. These unique characteristics suggest that ESP cells might drive physiological endometrial regeneration and be involved in the pathogenesis of endometriosis.


Proceedings of the National Academy of Sciences of the United States of America | 2007

Side population in human uterine myometrium displays phenotypic and functional characteristics of myometrial stem cells

Masanori Ono; Tetsuo Maruyama; Hirotaka Masuda; Takashi Kajitani; Takashi Nagashima; Toru Arase; Mamoru Ito; Kuniaki Ohta; Hiroshi Uchida; Hironori Asada; Yasunori Yoshimura; Hideyuki Okano; Yumi Matsuzaki

Over the course of pregnancy, the human uterus undergoes a 500- to 1,000-fold increase in volume and a 24-fold increase in weight. The uterine smooth muscle layer or myometrium is remodeled, and both cell hypertrophy and hyperplasia are evident. The origin of the new smooth muscle cells, however, is unclear. They may arise from existing smooth muscle cells, or they may be the product of stem cell differentiation. This study describes a subset of myometrial cells isolated from nonpregnant human myometrium that represents the myometrial stem cell population. This was characterized as side population of myometrial cells (myoSP) by a distinct Hoechst dye efflux pattern. In contrast to the main population of myometrial cells (myoMP), myoSP resided in quiescence, underexpressed or lacked myometrial cell markers, and could proliferate and eventually differentiate into mature myometrial cells in vitro only under low oxygen concentration. Although myoMP displayed mature myometrial phenotypes before and after in vitro cultivation, only myoSP, not myoMP, generated functional human myometrial tissues efficiently when transplanted into the uteri of severely immunodeficient mice. Finally, myoSP were multipotent and made to differentiate into osteocytes and adipocytes in vitro under the appropriate differentiation-inducing conditions. Thus, myoSP exhibited phenotypic and functional characteristics of myometrial stem cells. Study of myoSP will improve the understanding of myometrial physiology and the pathogenesis of myometrium-derived diseases such as leiomyoma. myoSP may also represent a novel source of biological material that could be used in the reconstruction of not only the human uterus but also other organs as well.


Proceedings of the National Academy of Sciences of the United States of America | 2007

Noninvasive and real-time assessment of reconstructed functional human endometrium in NOD/SCID/γcnull immunodeficient mice

Hirotaka Masuda; Tetsuo Maruyama; Emi Hiratsu; Junichi Yamane; Akio Iwanami; Takashi Nagashima; Masanori Ono; Hiroyuki Miyoshi; Hirotaka James Okano; Mamoru Ito; Norikazu Tamaoki; Tatsuji Nomura; Hideyuki Okano; Yumi Matsuzaki; Yasunori Yoshimura

Human uterine endometrium exhibits unique properties of cyclical regeneration and remodeling throughout reproductive life and also is subject to endometriosis through ectopic implantation of retrogradely shed endometrial fragments during menstruation. Here we show that functional endometrium can be regenerated from singly dispersed human endometrial cells transplanted beneath the kidney capsule of NOD/SCID/γcnull immunodeficient mice. In addition to the endometrium-like structure, hormone-dependent changes, including proliferation, differentiation, and tissue breakdown and shedding (menstruation), can be reproduced in the reconstructed endometrium, the blood to which is supplied predominantly by human vessels invading into the mouse kidney parenchyma. Furthermore, the hormone-dependent behavior of the endometrium regenerated from lentivirally engineered endometrial cells expressing a variant luciferase can be assessed noninvasively and quantitatively by in vivo bioluminescence imaging. These results indicate that singly dispersed endometrial cells have potential applications for tissue reconstitution, angiogenesis, and human–mouse chimeric vessel formation, providing implications for mechanisms underlying the physiological endometrial regeneration during the menstrual cycle and the establishment of endometriotic lesions. This animal system can be applied as the unique model of endometriosis or for other various types of neoplastic diseases with the capacity of noninvasive and real-time evaluation of the effect of therapeutic agents and gene targeting when the relevant cells are transplanted beneath the kidney capsule.


Cell Transplantation | 2012

A novel marker of human endometrial mesenchymal stem-like cells

Hirotaka Masuda; Siti S. Anwar; Hans Jörg Bühring; Jyothsna R. Rao; Caroline E. Gargett

Coexpression of CD140b (PDGFRβ) and CD146 has been used to isolate endometrial mesenchymal stem-like cells (eMSCs), which have a perivascular location. This study aims to evaluate a single marker for purifying eMSCs. Using an antibody panel with novel specificities, we screened human endometrial tissues and stromal cell suspensions by flow cytometry and immunohistochemistry to identify perivascular markers. Sorted subpopulations were examined for colony-forming unit (CFU), self-renewal, and differentiation assays for mesenchymal stem cell (MSC) function. We also transplanted sorted eMSCs under the kidney capsule of superimmunodeficient NSG mice. Magnetic bead selection was compared with flow cytometry sorting (flow sorting) using CFU assay. One novel marker (W5C5) was particularly effective in selecting eMSCs. W5C5+ cells comprise 4.2 ± 0.6% (n = 34) of endometrial stromal cells and reside predominantly in a perivascular location in both basal and functional layers of endometrium. The clonogenicity of W5C5+ cells is significantly greater than W5C5- and unselected cells. W5C5+ cells differentiated into adipocytes, osteocytes, chondrocytes, myocytes, and endothelial cells. W5C5+ cells produce endometrial stromal-like tissue in vivo. In terms of clonogenicity, magnetic bead-selected W5C5+ cells gave rise to significantly higher CFU numbers compared to flow-sorted W5C5+ cells. This study identified W5C5 as a single marker capable of purifying eMSCs possessing MSC properties and reconstituting endometrial stromal tissues in vivo. W5C5 enriches eMSCs to high purity and provides a simple protocol for their prospective isolation using magnetic bead selection rather than flow sorting. W5C5 selection may provide an alternate, readily available autologous source of MSC, obtainable with minimal morbidity using an office endometrial biopsy procedure for future cell-based therapies.


Reproduction | 2010

Human uterine stem/progenitor cells: their possible role in uterine physiology and pathology

Tetsuo Maruyama; Hirotaka Masuda; Masanori Ono; Takashi Kajitani; Yasunori Yoshimura

The human uterus mainly consists of the endometrium and the outer smooth muscle layer termed the myometrium. The uterus harbours the exceptional and remarkable regenerative ability responsible for cyclical regeneration and remodelling throughout the reproductive life. The uterus must swiftly and cooperatively enlarge to hold the growing foetus during pregnancy. Furthermore, the endometrium, in particular the functionalis layer, must also regenerate, differentiate and regress with each menstrual cycle under hormonal control. Endometrial regeneration from the basal layer is thought to contribute to replacement of the functionalis layer followed by its slough off during menses and parturition. These morphological and functional features of human endometrium can be reproduced in murine models in which severely immunodeficient mice are xenotransplanted with dispersed human endometrial cells under the kidney capsule. The uterine myometrium possesses the similar plasticity of the endometrium. This is demonstrated by multiple cycles of pregnancy-induced enlargement and regression after parturition. It is likely that regeneration and remodelling in the female reproductive tract are achieved presumably through endometrial and myometrial stem cell systems. Recent evidence now supports the existence of these stem cell systems in humans. Here, we will review our current understanding of uterine stem/progenitor cells. We also propose a novel hypothetical model in which stem cell activities explain the physiological remodelling and regeneration of the human uterus and the pathogenesis of gynaecological diseases such as endometriosis.


Journal of Immunology | 2009

The UDP-Glucose Receptor P2RY14 Triggers Innate Mucosal Immunity in the Female Reproductive Tract by Inducing IL-8

Toru Arase; Hiroshi Uchida; Takashi Kajitani; Masanori Ono; Kayoko Tamaki; Hideyuki Oda; Sayaka Nishikawa; Maki Kagami; Takashi Nagashima; Hirotaka Masuda; Hironori Asada; Yasunori Yoshimura; Tetsuo Maruyama

Innate mucosal immune responses, including recognition of pathogen-associated molecular patterns through Toll-like receptors, play an important role in preventing infection in the female reproductive tract (FRT). Damaged cells release nucleotides, including ATP and uridine 5′-diphosphoglucose (UDP-glucose), during inflammation and mechanical stress. We show in this report that P2RY14, a membrane receptor for UDP-glucose, is exclusively expressed in the epithelium, but not the stroma, of the FRT in humans and mice. P2RY14 and several proinflammatory cytokines, such as IL-8, are up-regulated in the endometria of patients with pelvic inflammatory disease. UDP-glucose stimulated IL-8 production via P2RY14 in human endometrial epithelial cells but not stromal cells. Furthermore, UDP-glucose enhanced neutrophil chemotaxis in the presence of a human endometrial epithelial cell line in an IL-8-dependent manner. Administration of UDP-glucose into the mouse uterus induced expression of macrophage inflammatory protein-2 and keratinocyte-derived cytokine, two murine chemokines that are functional homologues of IL-8, and augmented endometrial neutrophil recruitment. Reduced expression of P2RY14 by small interfering RNA gene silencing attenuated LPS- or UDP-glucose-induced leukocytosis in the mouse uterus. These results suggest that UDP-glucose and its receptor P2RY14 are key front line players able to trigger innate mucosal immune responses in the FRT bypassing the recognition of pathogen-associated molecular patterns. Our findings would significantly impact the strategic design of therapies to modulate mucosal immunity by targeting P2RY14.


PLOS ONE | 2012

Stem Cell-Like Differentiation Potentials of Endometrial Side Population Cells as Revealed by a Newly Developed In Vivo Endometrial Stem Cell Assay

Kaoru Miyazaki; Tetsuo Maruyama; Hirotaka Masuda; Akiko Yamasaki; Sayaka Uchida; Hideyuki Oda; Hiroshi Uchida; Yasunori Yoshimura

Background Endometrial stem/progenitor cells contribute to the cyclical regeneration of human endometrium throughout a womans reproductive life. Although the candidate cell populations have been extensively studied, no consensus exists regarding which endometrial population represents the stem/progenitor cell fraction in terms of in vivo stem cell activity. We have previously reported that human endometrial side population cells (ESP), but not endometrial main population cells (EMP), exhibit stem cell-like properties, including in vivo reconstitution of endometrium-like tissues when xenotransplanted into immunodeficient mice. The reconstitution efficiency, however, was low presumably because ESP cells alone could not provide a sufficient microenvironment (niche) to support their stem cell activity. The objective of this study was to establish a novel in vivo endometrial stem cell assay employing cell tracking and tissue reconstitution systems and to examine the stem cell properties of ESP through use of this assay. Methodology/Principal Findings ESP and EMP cells isolated from whole endometrial cells were infected with lentivirus to express tandem Tomato (TdTom), a red fluorescent protein. They were mixed with unlabeled whole endometrial cells and then transplanted under the kidney capsule of ovariectomized immunodeficient mice. These mice were treated with estradiol and progesterone for eight weeks and nephrectomized. All of the grafts reconstituted endometrium-like tissues under the kidney capsules. Immunofluorescence revealed that TdTom-positive cells were significantly more abundant in the glandular, stromal, and endothelial cells of the reconstituted endometrium in mice transplanted with TdTom-labeled ESP cells than those with TdTom-labeled EMP cells. Conclusions/Significance We have established a novel in vivo endometrial stem cell assay in which multi-potential differentiation can be identified through cell tracking during in vivo endometrial tissue reconstitution. Using this assay, we demonstrated that ESP cells differentiated into multiple endometrial lineages in the niche provided by whole endometrial cells, indicating that ESP cells are genuine endometrial stem/progenitor cells.


Human Reproduction | 2010

OCT4 expression in human uterine myometrial stem/progenitor cells

Masanori Ono; Takashi Kajitani; Hiroshi Uchida; Toru Arase; Hideyuki Oda; S. Nishikawa-Uchida; Hirotaka Masuda; Takashi Nagashima; Yasunori Yoshimura; Tetsuo Maruyama

BACKGROUND The transcription factor, octamer-binding transcription factor 4 (OCT4)/POU5F1, is expressed in embryonic stem cells, germ cells and some types of adult stem cells. Human OCT4 encodes two isoforms, OCT4A and OCT4B. While OCT4A plays a crucial role in the maintenance of stem cell properties, including pluripotency, whereas OCT4B does not. We previously reported that human myometrium contains side population cells (myoSP) with a Hoechst 33 342 low-fluorescent profile. These cells exhibit phenotypic and functional characteristics of myometrial stem cells. The objective of this study was to investigate the comparative expression of OCT4 in the stem/progenitor cell population of the human myometrium. METHODS Human myometrial tissue samples were collected from 18 consenting patients who underwent hysterectomy because of benign gynecological diseases. The resultant isolated or cultured myometrial cells and isolated myoSP were subjected to semi-quantitative and real-time RT-PCR analyses, immunoblot analyses and immunohistochemistry. RESULTS RT-PCR and immunoblot analyses revealed that OCT4 mRNA and OCT4 protein were detectable in some (but not all) myometrial samples. Immunohistochemistry showed that OCT4 protein was confined to the nuclei of relatively few cells in myometrial tissues expressing OCT4 mRNA. OCT4 and OCT4A transcripts, but not those of OCT4B, were more abundant in myoSP than in non-myoSP, as determined by real-time and semi-quantitative RT-PCR analyses. CONCLUSIONS Relatively few myometrial cells express OCT4 protein. OCT4 mRNA, in particular OCT4A mRNA, is up-regulated in myoSP that have been reported to exhibit stem cell-like properties. Taken together, the present results indicate that the myoSP population is enriched in OCT4 mRNA.


Biology of Reproduction | 2015

Endometrial Side Population Cells: Potential Adult Stem/Progenitor Cells in Endometrium

Hirotaka Masuda; Tetsuo Maruyama; Caroline E. Gargett; Kaoru Miyazaki; Yumi Matsuzaki; Hideyuki Okano; Mamoru Tanaka

ABSTRACT Uterine endometrium is one of the most important organs for species preservation. However, the physiology of human endometrium remains poorly understood, because the human endometrium undergoes rapid and large changes during each menstrual cycle and it is very difficult to investigate human endometrium as one organ. This remarkable regenerative capacity of human endometrium strongly suggests the existence of adult stem cells, and physiology of endometrium cannot be explained without adult stem cells. Therefore, investigating endometrial stem/progenitor cells should lead to a breakthrough in understanding the normal endometrial physiology and the pathophysiology of endometrial neoplastic disorders, such as endometriosis and endometrial cancer. Several cell populations have been discovered as putative endometrial stem/progenitor cells. Emerging evidence reveals that the endometrial side population (SP) is one of the potential endometrial stem/progenitor populations. Of all the endometrial stem/progenitor cell candidates, the endometrial SP (ESP) is best investigated in vitro and in vivo, and has the largest number of references. In this review, we provide an overview of the accumulating evidence for the ESP cells, both directly from human endometria and from cultured endometrial cells. Furthermore, SP cells are compared to other potential stem/progenitor cells, and we discuss their stem cell properties. We also discuss the difficulties and unsolved issues in endometrial stem cell biology.

Collaboration


Dive into the Hirotaka Masuda's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge