Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Hirotaka Nagai is active.

Publication


Featured researches published by Hirotaka Nagai.


Proceedings of the National Academy of Sciences of the United States of America | 2011

Diameter and rigidity of multiwalled carbon nanotubes are critical factors in mesothelial injury and carcinogenesis

Hirotaka Nagai; Yasumasa Okazaki; Shan Hwu Chew; Nobuaki Misawa; Yoriko Yamashita; Shinya Akatsuka; Toshikazu Ishihara; Kyoko Yamashita; Yutaka Yoshikawa; Hiroyuki Yasui; Li Jiang; Hiroki Ohara; Takashi Takahashi; Gaku Ichihara; Kostas Kostarelos; Yasumitsu Miyata; Hisanori Shinohara; Shinya Toyokuni

Multiwalled carbon nanotubes (MWCNTs) have the potential for widespread applications in engineering and materials science. However, because of their needle-like shape and high durability, concerns have been raised that MWCNTs may induce asbestos-like pathogenicity. Although recent studies have demonstrated that MWCNTs induce various types of reactivities, the physicochemical features of MWCNTs that determine their cytotoxicity and carcinogenicity in mesothelial cells remain unclear. Here, we showed that the deleterious effects of nonfunctionalized MWCNTs on human mesothelial cells were associated with their diameter-dependent piercing of the cell membrane. Thin MWCNTs (diameter ∼ 50 nm) with high crystallinity showed mesothelial cell membrane piercing and cytotoxicity in vitro and subsequent inflammogenicity and mesotheliomagenicity in vivo. In contrast, thick (diameter ∼ 150 nm) or tangled (diameter ∼ 2–20 nm) MWCNTs were less toxic, inflammogenic, and carcinogenic. Thin and thick MWCNTs similarly affected macrophages. Mesotheliomas induced by MWCNTs shared homozygous deletion of Cdkn2a/2b tumor suppressor genes, similar to mesotheliomas induced by asbestos. Thus, we propose that different degrees of direct mesothelial injury by thin and thick MWCNTs are responsible for the extent of inflammogenicity and carcinogenicity. This work suggests that control of the diameter of MWCNTs could reduce the potential hazard to human health.


Archives of Biochemistry and Biophysics | 2010

Biopersistent fiber-induced inflammation and carcinogenesis: Lessons learned from asbestos toward safety of fibrous nanomaterials

Hirotaka Nagai; Shinya Toyokuni

Nano-sized durable fibrous materials such as carbon nanotubes have raised safety concerns similar to those raised by asbestos. However, the mechanism by which particulates with ultrafine structure cause inflammation and ultimately cancer (e.g. malignant mesothelioma and lung cancer) is largely unknown. This is partially because the particulates are not uniform and they vary in a plethora of factors. Such variances include length, diameter, surface area, density, shape, contaminant metals (including iron) and crystallinity. Each of these factors is involved in particulate toxicity both in vitro and in vivo. Thus, the elicited biological responses are incredibly complicated. Various kinds of fibers were evaluated with different cells, animals and methods. The aim of this review is to concisely summarize previous reports from the standpoint that activation of macrophages and mesothelial injury are the two major mechanisms of inflammation and possibly cancer. Importantly, these two mechanisms appear to be interacting with each other. However, there is a lack of data on the interplay of macrophage and mesothelium especially in vivo. Since fibrous nanomaterials present potential applications in various fields, it is necessary to develop standard evaluation methods to minimize risks for human health.


Cancer Science | 2008

Characteristics and modifying factors of asbestos-induced oxidative DNA damage

Li Jiang; Hirotaka Nagai; Hiroki Ohara; Shigeo Hara; Mitsuhiro Tachibana; Seishiro Hirano; Yasushi Shinohara; Norihiko Kohyama; Shinya Akatsuka; Shinya Toyokuni

Respiratory exposure to asbestos has been linked with mesothelioma in humans. However, its carcinogenic mechanism is still unclear. Here we studied the ability of chrysotile, crocidolite and amosite fibers to induce oxidative DNA damage and the modifying factors using four distinct approaches. Electron spin resonance analyses revealed that crocidolite and amosite containing high amounts of iron, but not chrysotile, catalyzed hydroxyl radical generation in the presence of H2O2, which was enhanced by an iron chelator, nitrilotriacetic acid, and suppressed by desferal. Natural iron chelators, such as citrate, adenosine 5′‐triphosphate and guanosine 5′‐triphosphate, did not inhibit this reaction. Second, we used time‐lapse video microscopy to evaluate how cells cope with asbestos fibers. RAW264.7 cells, MeT‐5 A and HeLa cells engulfed asbestos fibers, which reached not only cytoplasm but also the nucleus. Third, we utilized supercoiled plasmid DNA to evaluate the ability of each asbestos to induce DNA double strand breaks (DSB). Crocidolite and amosite, but not chrysotile, induced DNA DSB in the presence of iron chelators. We cloned the fragments to identify break sites. DSB occurred preferentially within repeat sequences and between two G:C sequences. Finally, i.p. administration of each asbestos to rats induced not only formation of nuclear 8‐hydroxy‐2′‐deoxyguanosine in the mesothelia, spleen, liver and kidney but also significant iron deposits in the spleen. Together with the established carcinogenicity of i.p. chrysotile, our data suggest that asbestos‐associated catalytic iron, whether constitutional or induced by other mechanisms, plays an important role in asbestos‐induced carcinogenesis and that chemoprevention may be possible through targeting the catalytic iron. (Cancer Sci 2008; 99: 2142–2151)


Cancer Science | 2012

Differences and similarities between carbon nanotubes and asbestos fibers during mesothelial carcinogenesis: Shedding light on fiber entry mechanism

Hirotaka Nagai; Shinya Toyokuni

The emergence of nanotechnology represents an important milestone, as it opens the way to a broad spectrum of applications for nanomaterials in the fields of engineering, industry and medicine. One example of nanomaterials that have the potential for widespread use is carbon nanotubes, which have a tubular structure made of graphene sheets. However, there have been concerns that they may pose a potential health risk due to their similarities to asbestos, namely their high biopersistence and needle‐like structure. We recently found that despite these similarities, carbon nanotubes and asbestos differ in certain aspects, such as their mechanism of entry into mesothelial cells. In the study, we showed that non‐functionalized, multi‐walled carbon nanotubes enter mesothelial cells by directly piercing through the cell membrane in a diameter‐ and rigidity‐dependent manner, whereas asbestos mainly enters these cells through the process of endocytosis, which is independent of fiber diameter. In this review, we discuss the key differences, as well as similarities, between asbestos fibers and carbon nanotubes. We also summarize previous reports regarding the mechanism of carbon nanotube entry into non‐phagocytic cells. As the entry of fibers into mesothelial cells is a crucial step in mesothelial carcinogenesis, we believe that a comprehensive study on the differences by which carbon nanotubes and asbestos fibers enter into non‐phagocytic cells will provide important clues for the safer manufacture of carbon nanotubes through strict regulation on fiber characteristics, such as diameter, surface properties, length and rigidity. (Cancer Sci, doi: 10.1111/j.1349‐7006.2012.02326.x, 2012)


The Journal of Pathology | 2012

Iron overload signature in chrysotile-induced malignant mesothelioma†

Li Jiang; Shinya Akatsuka; Hirotaka Nagai; Shan-Hwu Chew; Hiroki Ohara; Yasumasa Okazaki; Yoriko Yamashita; Yutaka Yoshikawa; Hiroyuki Yasui; Katsuya Ikuta; Katsunori Sasaki; Yutaka Kohgo; Seishiro Hirano; Yasushi Shinohara; Norihiko Kohyama; Takashi Takahashi; Shinya Toyokuni

Exposure to asbestos is a risk for malignant mesothelioma (MM) in humans. Among the commercially used types of asbestos (chrysotile, crocidolite, and amosite), the carcinogenicity of chrysotile is not fully appreciated. Here, we show that all three asbestos types similarly induced MM in the rat peritoneal cavity and that chrysotile caused the earliest mesothelioma development with a high fraction of sarcomatoid histology. The pathogenesis of chrysotile‐induced mesothelial carcinogenesis was closely associated with iron overload: repeated administration of an iron chelator, nitrilotriacetic acid, which promotes the Fenton reaction, significantly reduced the period required for carcinogenesis; massive iron deposition was found in the peritoneal organs with high serum ferritin; and homozygous deletion of the CDKN2A/2B/ARF tumour suppressor genes, the most frequent genomic alteration in human MM and in iron‐induced rodent carcinogenesis, was observed in 92.6% of the cases studied with array‐based comparative genomic hybridization. The induced rat MM cells revealed high expression of mesoderm‐specific transcription factors, Dlx5 and Hand1, and showed an iron regulatory profile of active iron uptake and utilization. These data indicate that chrysotile is a strong carcinogen when exposed to mesothelia, acting through the induction of local iron overload. Therefore, an intervention to remove local excess iron might be a strategy to prevent MM after asbestos exposure. Copyright


PLOS ONE | 2012

Fenton Reaction Induced Cancer in Wild Type Rats Recapitulates Genomic Alterations Observed in Human Cancer

Shinya Akatsuka; Yoriko Yamashita; Hiroki Ohara; Yu-Ting Liu; Masashi Izumiya; Koichiro Abe; Masako Ochiai; Li Jiang; Hirotaka Nagai; Yasumasa Okazaki; Hideki Murakami; Yoshitaka Sekido; Eri Arai; Yae Kanai; Okio Hino; Takashi Takahashi; Hitoshi Nakagama; Shinya Toyokuni

Iron overload has been associated with carcinogenesis in humans. Intraperitoneal administration of ferric nitrilotriacetate initiates a Fenton reaction in renal proximal tubules of rodents that ultimately leads to a high incidence of renal cell carcinoma (RCC) after repeated treatments. We performed high-resolution microarray comparative genomic hybridization to identify characteristics in the genomic profiles of this oxidative stress-induced rat RCCs. The results revealed extensive large-scale genomic alterations with a preference for deletions. Deletions and amplifications were numerous and sometimes fragmented, demonstrating that a Fenton reaction is a cause of such genomic alterations in vivo. Frequency plotting indicated that two of the most commonly altered loci corresponded to a Cdkn2a/2b deletion and a Met amplification. Tumor sizes were proportionally associated with Met expression and/or amplification, and clustering analysis confirmed our results. Furthermore, we developed a procedure to compare whole genomic patterns of the copy number alterations among different species based on chromosomal syntenic relationship. Patterns of the rat RCCs showed the strongest similarity to the human RCCs among five types of human cancers, followed by human malignant mesothelioma, an iron overload-associated cancer. Therefore, an iron-dependent Fenton chemical reaction causes large-scale genomic alterations during carcinogenesis, which may result in distinct genomic profiles. Based on the characteristics of extensive genome alterations in human cancer, our results suggest that this chemical reaction may play a major role during human carcinogenesis.


Cancer Science | 2011

Asbestos surface provides a niche for oxidative modification.

Hirotaka Nagai; Toshikazu Ishihara; Wen-Hua Lee; Hiroki Ohara; Yasumasa Okazaki; Katsuya Okawa; Shinya Toyokuni

Asbestos is a potent carcinogen associated with increased risks of malignant mesothelioma and lung cancer in humans. Although the mechanism of carcinogenesis remains elusive, the physicochemical characteristics of asbestos play a role in the progression of asbestos‐induced diseases. Among these characteristics, a high capacity to adsorb and accommodate biomolecules on its abundant surface area has been linked to cellular and genetic toxicity. Several previous studies identified asbestos‐interacting proteins. Here, with the use of matrix‐assisted laser desorption ionization‐time of flight mass spectrometry, we systematically identified proteins from various lysates that adsorbed to the surface of commercially used asbestos and classified them into the following groups: chromatin/nucleotide/RNA‐binding proteins, ribosomal proteins, cytoprotective proteins, cytoskeleton‐associated proteins, histones and hemoglobin. The surfaces of crocidolite and amosite, two iron‐rich types of asbestos, caused more protein scissions and oxidative modifications than that of chrysotile by in situ‐generated 4‐hydroxy‐2‐nonenal. In contrast, we confirmed the intense hemolytic activity of chrysotile and found that hemoglobin attached to chrysotile, but not silica, can work as a catalyst to induce oxidative DNA damage. This process generates 8‐hydroxy‐2′‐deoxyguanosine and thus corroborates the involvement of iron in the carcinogenicity of chrysotile. This evidence demonstrates that all three types of asbestos adsorb DNA and specific proteins, providing a niche for oxidative modification via catalytic iron. Therefore, considering the affinity of asbestos for histones/DNA and the internalization of asbestos into mesothelial cells, our results suggest a novel hypothetical mechanism causing genetic alterations during asbestos‐induced carcinogenesis. (Cancer Sci 2011; 102: 2118–2125)


Oncogene | 2007

CLCP1 interacts with semaphorin 4B and regulates motility of lung cancer cells

Hirotaka Nagai; Nobuyoshi Sugito; H Matsubara; Yoshio Tatematsu; Toyoaki Hida; Yoshitaka Sekido; Masato Nagino; Yuji Nimura; Takashi Takahashi; Hirotaka Osada

We previously established a highly metastatic subline, LNM35, from the NCI-H460 lung cancer cell line, and demonstrated upregulation of a novel gene, CLCP1 (CUB, LCCL-homology, coagulation factor V/VIII homology domains protein), in LNM35 and lung cancer specimens. In this study, we focused on the potential roles of that gene in cancer metastasis. First, we established stable LNM35 RNAi clones, in which CLCP1 expression was suppressed by RNAi, and found that their motility was significantly reduced, although growth rates were not changed. Next, in vitro selection of a phage display library demonstrated that a phage clone displaying a peptide similar to a sequence within the Sema domain of semaphorin 4B (SEMA4B) interacted with LNM35. Immunoprecipitation experiments confirmed interaction of CLCP1 with SEMA4B, regulation of CLCP1 protein by ubiquitination and proteasome degradation enhanced in the presence of SEMA4B. These results are the first to indicate that CLCP1 plays a role in cell motility, whereas they also showed that at least one of its ligands is SEMA4B and that their interaction mediates proteasome degradation by CLCP1. Although the physiological role of the interaction between CLCP1 and SEMA4B remains to be investigated, this novel gene may become a target of therapy to inhibit metastasis of lung cancers.


Pathology International | 2013

Intraperitoneal administration of tangled multiwalled carbon nanotubes of 15 nm in diameter does not induce mesothelial carcinogenesis in rats

Hirotaka Nagai; Yasumasa Okazaki; Shan Hwu Chew; Nobuaki Misawa; Yasumitsu Miyata; Hisanori Shinohara; Shinya Toyokuni

Multiwalled carbon nanotubes (MWCNTs) have attracted public attention not only for their potential applications in engineering and materials science but also for possible environmental risks. MWCNTs share similar properties with asbestos, a definite human carcinogen causing malignant mesothelioma (MM), in that they are both biopersistent thin fibers with a high aspect ratio. Certain types of MWCNTs do induce MM in animal experiments. Though there are many different types of MWCNTs awaiting use in industry, there is little evidence about what types of MWCNTs present a high risk for MM in vivo. We have previously shown that the diameter of MWCNTs is one of the critical factors for mesothelial injury, which eventually leads to MM. Because of the extensive commercial use of MWCNTs, the properties of MWCNTs that determine carcinogenic activity should be clarified. Here we report that a high dose (10 mg) of a tangled form of pristine MWCNT (with a diameter of 15 nm) did not induce MM after intraperitoneal administration in rats, which were followed for up to 3 years after injection. This observation strengthens our previous finding that the rigidity, diameter, length and surface properties of MWCNTs are important factors in MM induction in vivo.


Journal of Clinical Biochemistry and Nutrition | 2015

Asbestos and multi-walled carbon nanotubes generate distinct oxidative responses in inflammatory cells.

Satomi Funahashi; Yasumasa Okazaki; Daiki Ito; Atsushi Asakawa; Hirotaka Nagai; Masafumi Tajima; Shinya Toyokuni

Asbestos exposure is considered a social burden by causing mesothelioma. Despite the use of synthetic materials, multi-walled carbon nanotubes (MWCNTs) are similar in dimension to asbestos and produce mesothelioma in animals. The role of inflammatory cells in mesothelial carcinogenesis remains unclear. Here, we evaluated the differences in inflammatory cell responses following exposure to these fibrous materials using a luminometer and L-012 (8-amino-5-chloro-7-phenylpyrido[3,4-d]pyridazine-1,4-(2H,3H) dione) to detect reactive oxygen species (ROS). Rat peripheral blood or RAW264.7 cells were used to assess the effects on neutrophils and macrophages, respectively. Crocidolite and amosite induced significant ROS generation by neutrophils with a peak at 10 min, whereas that of chrysotile was ~25% of the crocidolite/amosite response. MWCNTs with different diameters (~15, 50, 115 and 145 nm) and different carcinogenicity did not induce significant ROS in peripheral blood. However, the MWCNTs induced a comparable amount of ROS in RAW264.7 cells to that following asbestos treatment. The peaks for MWCNTs (0.5–1.5 h) were observed earlier than those for asbestos (1–5 h). Apocynin and superoxide dismutase significantly inhibited ROS generation for each fiber, suggesting an involvement of NADPH oxidase and superoxide. Thus, asbestos and MWCNTs induce different oxidative responses in inflammatory cells, indicating the importance of mesothelial cell evaluation for carcinogenesis.

Collaboration


Dive into the Hirotaka Nagai's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge