Hiroto Fujita
Gunma University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Hiroto Fujita.
Journal of the American Chemical Society | 2013
Yuri Imaizumi; Yuuya Kasahara; Hiroto Fujita; Shunsuke Kitadume; Hiroaki Ozaki; Tamaki Endoh; Masayasu Kuwahara; Naoki Sugimoto
Nucleic acid aptamers are receptors of single-stranded oligonucleotides that specifically bind to their targets. Significant interest is currently focused on development of small molecule aptamers owing to their applications in biosensing, diagnostics, and therapeutics involving low molecular weight biomarkers and drugs. Despite great potential for their diverse applications, relatively few aptamers that bind to small molecules have been reported, and methodologies to enhance and broaden their functions by expanding chemical repertories have barely been examined. Here we describe construction of a modified DNA library that includes (E)-5-(2-(N-(2-(N(6)-adeninyl)ethyl))carbamylvinyl)-uracil bases and discovery of high-affinity camptothecin-binding DNA aptamers using a systematic evolution of ligands by the exponential enrichment method. Our results are the first to demonstrate the superior efficacy of base modification on affinity enhancement and the usefulness of unnatural nucleic acid libraries for development of small molecule aptamers.
Analytical Chemistry | 2014
Yuka Kataoka; Hiroto Fujita; Yuuya Kasahara; Toshitada Yoshihara; Seiji Tobita; Masayasu Kuwahara
We newly synthesized thioflavin T (ThT) analogs for which the methyl group at the N3 position on the benzothiazole ring was replaced with either a ((p-(dimethylamino)benzoyl)oxy)ethyl group (ThT-DB) or a hydroxyethyl group (ThT-HE). In several neutral buffers, ThT-HE bound to a parallel guanine-quadruplex (G4) DNA and selectively emitted strong fluorescence at 74- to 240-fold higher intensities than those in the presence of double-stranded DNA (dsDNA), whereas ThT resulted in only 13- to 25-fold higher intensities. Furthermore, circular dichroism (CD) analyses using ThT, ThT-DB, and ThT-HE showed that these compounds could induce topological changes in G4. In addition, the different chemical structures of the N3 substituents could alter a G4-DNA conformation. These results indicate a great potential for N3-substituted ThT analogs as G4 probes and drug leads to achieve gene expression regulation.
Pharmaceuticals | 2013
Hiroto Fujita; Yuri Imaizumi; Yuuya Kasahara; Shunsuke Kitadume; Hiroaki Ozaki; Masayasu Kuwahara; Naoki Sugimoto
We recently selected DNA aptamers that bind to camptothecin (CPT) and CPT derivatives from a 70-mer oligodeoxyribonucleotide (ODN) library using the Systematic Evolution of Ligands by EXponential enrichment (SELEX) method. The target-binding activity of the obtained 70-mer CPT-binding DNA aptamer, termed CA-70, which contains a 16-mer guanine (G)-core motif (G3TG3TG3T2G3) that forms a three-tiered G-quadruplex, was determined using fluorescence titration. In this study, truncated fragments of CA-70 that all have the G-core motif, CA-40, -20, -19, -18A, -18B, -17, and -16, were carefully analyzed. We found that CA-40 retained the target-binding activity, whereas CA-20, -19, and -18B exhibited little or no binding activities. Further, not only CA-18A but also the shorter length fragments CA-17 and -16 clearly retained the binding activity, indicating that tail strands of the G-quadruplex structure can significantly affect the target binding of G-quadruplex DNA aptamers. Further analyses using circular dichroism (CD) spectroscopy and fluorescence polarization (FP) assay were conducted to investigate the structure and affinity of G-quadruplex DNA aptamers.
Analytical Chemistry | 2016
Hiroto Fujita; Yuka Kataoka; Seiji Tobita; Masayasu Kuwahara; Naoki Sugimoto
We have developed a novel RNA detection method, termed signal amplification by ternary initiation complexes (SATIC), in which an analyte sample is simply mixed with the relevant reagents and allowed to stand for a short time under isothermal conditions (37 °C). The advantage of the technique is that there is no requirement for (i) heat annealing, (ii) thermal cycling during the reaction, (iii) a reverse transcription step, or (iv) enzymatic or mechanical fragmentation of the target RNA. SATIC involves the formation of a ternary initiation complex between the target RNA, a circular DNA template, and a DNA primer, followed by rolling circle amplification (RCA) to generate multiple copies of G-quadruplex (G4) on a long DNA strand like beads on a string. The G4s can be specifically fluorescence-stained with N(3)-hydroxyethyl thioflavin T (ThT-HE), which emits weakly with single- and double-stranded RNA/DNA but strongly with parallel G4s. An improved dual SATIC system, which involves the formation of two different ternary initiation complexes in the RCA process, exhibited a wide quantitative detection range of 1-5000 pM. Furthermore, this enabled visual observation-based RNA detection, which is more rapid and convenient than conventional isothermal methods, such as reverse transcription-loop-mediated isothermal amplification, signal mediated amplification of RNA technology, and RNA-primed rolling circle amplification. Thus, SATIC methodology may serve as an on-site and real-time measurement technique for transcriptomic biomarkers for various diseases.
Scientific Reports | 2017
Hirotaka Minagawa; Kentaro Onodera; Hiroto Fujita; Taiichi Sakamoto; Joe Akitomi; Naoto Kaneko; Ikuo Shiratori; Masayasu Kuwahara; Katsunori Horii; Iwao Waga
We have attained a chemically modified DNA aptamer against salivary α-amylase (sAA), which attracts researchers’ attention as a useful biomarker for assessing human psychobiological and social behavioural processes, although high affinity aptamers have not been isolated from a random natural DNA library to date. For the selection, we used the base-appended base (BAB) modification, that is, a modified-base DNA library containing (E)-5-(2-(N-(2-(N6-adeninyl)ethyl))carbamylvinyl)-uracil in place of thymine. After eight rounds of selection, a 75 mer aptamer, AMYm1, which binds to sAA with extremely high affinity (Kd < 1 nM), was isolated. Furthermore, we have successfully determined the 36-mer minimum fragment, AMYm1-3, which retains target binding activity comparable to the full-length AMYm1, by surface plasmon resonance assays. Nuclear magnetic resonance spectral analysis indicated that the minimum fragment forms a specific stable conformation, whereas the predicted secondary structures were suggested to be disordered forms. Thus, DNA libraries with BAB-modifications can achieve more diverse conformations for fitness to various targets compared with natural DNA libraries, which is an important advantage for aptamer development. Furthermore, using AMYm1, a capillary gel electrophoresis assay and lateral flow assay with human saliva were conducted, and its feasibility was demonstrated.
Bioorganic & Medicinal Chemistry Letters | 2016
Hidekazu Hoshino; Yuuya Kasahara; Hiroto Fujita; Masayasu Kuwahara; Kunihiko Morihiro; Shin-ichi Tsunoda; Satoshi Obika
Recently, 7-substituted 7-deazapurine nucleoside triphosphates and 5-substituted pyrimidine nucleoside triphosphates (dN(am)TPs) were synthesized to extend enzymatically using commercially available polymerase. However, extension was limited when we attempted to incorporate the substrates consecutively. To address this, we have produced a mutant polymerase that can efficiently accept the modified nucleotide with amphiphilic groups as substrates. Here we show that the KOD polymerase mutant, KOD exo(-)/A485L, had the ability to incorporate dN(am)TP continuously over 50nt, indicating that the mutant is sufficient for generating functional nucleic acid molecules.
Current protocols in human genetics | 2016
Hiroto Fujita; Masayasu Kuwahara
Nucleic acid aptamers for small molecules are currently being developed and have a potential role in diverse applications including biosensing, diagnostics, and therapeutics involving low‐molecular‐weight biomarkers and drugs. To enhance and broaden their functions through chemical modification, systematic evolution of ligands by exponential enrichment (SELEX) selection has been attempted with modified DNA/RNA libraries. Recently, we demonstrated the superior efficacy of base modification for affinity enhancement and the usefulness of unnatural nucleic acid libraries for development of small‐molecule aptamers. In this unit, we describe construction of a modified DNA library that includes (E)‐5‐(2‐(N‐(2‐(N 6‐adeninyl)ethyl))carbamylvinyl)uracil bases and acquisition of high‐affinity camptothecin‐binding DNA aptamers, in addition to those of the corresponding natural DNA library and aptamers, using the SELEX method.
Australian Journal of Chemistry | 2016
Kenta Hagiwara; Yuuya Kasahara; Hiroto Fujita; Masayasu Kuwahara
Non-equilibrium capillary electrophoresis of equilibrium mixtures (NECEEM) is a kinetic capillary electrophoresis method used for the affinity analysis of DNA binding to proteins or ligands as well as a rapid selection of DNA aptamers. However, long DNA strands (100-mer or more) are generally difficult to analyse by this method owing to their poor peak separation. Herein, we report optimized conditions (use of a neutral phosphate buffer with an ionic strength of 0.074 as a binding buffer and use of an 80-cm fused silica capillary with a 75-μm internal diameter) for the peak separation of a 100-mer thrombin-binding DNA aptamer-target complex and its consequent enrichment using the NECEEM-based capillary electrophoresis–systematic evolution of ligands by exponential enrichment (CE-SELEX) method.
Bioorganic & Medicinal Chemistry Letters | 2018
Hiroto Fujita; Yusuke Inoue; Masayasu Kuwahara
We found for the first time that a thrombin-binding DNA aptamer (TBA) is selectively entrapped in fibrin gels during the gel growth reaction catalyzed by thrombin. Furthermore, using this phenomenon, we successfully demonstrated multiple incorporation of amphiphilic aliphatic groups into fibrin gels via chemically modified TBA.
Scientific Reports | 2017
Hiroto Fujita; Yuka Kataoka; Remi Nagano; Yasuyo Nakajima; Masanobu Yamada; Naoki Sugimoto; Masayasu Kuwahara
Gene regulation systems are mimicked by simple quantitative detection of non-nucleic acid molecular targets such as protein and metabolite. Here, we describe a one-tube, one-step real-time quantitative detection methodology for isothermal signal amplification of those targets. Using this system, real-time quantitative detection of thrombin and streptomycin, which were used as examples for protein and metabolite targets, was successfully demonstrated with detection limits of at most 50 pM and 75 nM, respectively. Notably, the dynamic range of target concentrations could be obtained for over four orders of magnitude. Thus, our method is expected to serve as a point-of-care or on-site test for medical diagnosis and food and environmental hygiene.