Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Hiroyoshi Takano is active.

Publication


Featured researches published by Hiroyoshi Takano.


Nature | 2004

Genome sequence of the ultrasmall unicellular red alga Cyanidioschyzon merolae 10D

Motomichi Matsuzaki; Osami Misumi; Tadasu Shin-I; Shinichiro Maruyama; Manabu Takahara; Shin-ya Miyagishima; Toshiyuki Mori; Keiji Nishida; Fumi Yagisawa; Keishin Nishida; Yamato Yoshida; Yoshiki Nishimura; Shunsuke Nakao; Tamaki Kobayashi; Yu Momoyama; Tetsuya Higashiyama; Ayumi Minoda; Masako Sano; Hisayo Nomoto; Kazuko Oishi; Hiroko Hayashi; Fumiko Ohta; Satoko Nishizaka; Shinobu Haga; Sachiko Miura; Tomomi Morishita; Yukihiro Kabeya; Kimihiro Terasawa; Yutaka Suzuki; Yasuyaki Ishii

Small, compact genomes of ultrasmall unicellular algae provide information on the basic and essential genes that support the lives of photosynthetic eukaryotes, including higher plants. Here we report the 16,520,305-base-pair sequence of the 20 chromosomes of the unicellular red alga Cyanidioschyzon merolae 10D as the first complete algal genome. We identified 5,331 genes in total, of which at least 86.3% were expressed. Unique characteristics of this genomic structure include: a lack of introns in all but 26 genes; only three copies of ribosomal DNA units that maintain the nucleolus; and two dynamin genes that are involved only in the division of mitochondria and plastids. The conserved mosaic origin of Calvin cycle enzymes in this red alga and in green plants supports the hypothesis of the existence of single primary plastid endosymbiosis. The lack of a myosin gene, in addition to the unexpressed actin gene, suggests a simpler system of cytokinesis. These results indicate that the C. merolae genome provides a model system with a simple gene composition for studying the origin, evolution and fundamental mechanisms of eukaryotic cells.


BMC Biology | 2007

A 100%-complete sequence reveals unusually simple genomic features in the hot-spring red alga Cyanidioschyzon merolae

Hisayoshi Nozaki; Hiroyoshi Takano; Osami Misumi; Kimihiro Terasawa; Motomichi Matsuzaki; Shinichiro Maruyama; Keiji Nishida; Fumi Yagisawa; Yamato Yoshida; Takayuki Fujiwara; Susumu Takio; Katsunori Tamura; Sung Jin Chung; Soichi Nakamura; Haruko Kuroiwa; Kan Tanaka; Naoki Sato; Tsuneyoshi Kuroiwa

BackgroundAll previously reported eukaryotic nuclear genome sequences have been incomplete, especially in highly repeated units and chromosomal ends. Because repetitive DNA is important for many aspects of biology, complete chromosomal structures are fundamental for understanding eukaryotic cells. Our earlier, nearly complete genome sequence of the hot-spring red alga Cyanidioschyzon merolae revealed several unique features, including just three ribosomal DNA copies, very few introns, and a small total number of genes. However, because the exact structures of certain functionally important repeated elements remained ambiguous, that sequence was not complete. Obviously, those ambiguities needed to be resolved before the unique features of the C. merolae genome could be summarized, and the ambiguities could only be resolved by completing the sequence. Therefore, we aimed to complete all previous gaps and sequence all remaining chromosomal ends, and now report the first nuclear-genome sequence for any eukaryote that is 100% complete.ResultsOur present complete sequence consists of 16546747 nucleotides covering 100% of the 20 linear chromosomes from telomere to telomere, representing the simple and unique chromosomal structures of the eukaryotic cell. We have unambiguously established that the C. merolae genome contains the smallest known histone-gene cluster, a unique telomeric repeat for all chromosomal ends, and an extremely low number of transposons.ConclusionBy virtue of these attributes and others that we had discovered previously, C. merolae appears to have the simplest nuclear genome of the non-symbiotic eukaryotes. These unusually simple genomic features in the 100% complete genome sequence of C. merolae are extremely useful for further studies of eukaryotic cells.


Molecular Genetics and Genomics | 2000

A putative mitochondrial ftsZ gene is present in the unicellular primitive red alga Cyanidioschyzon merolae.

Manabu Takahara; Hiroyuki Takahashi; Sachihiro Matsunaga; Shin-ya Miyagishima; Hiroyoshi Takano; Atsushi Sakai; Shigeyuki Kawano; Tsuneyoshi Kuroiwa

Abstract. Two ftsZ homologues were isolated from the unicellular primitive red alga Cyanidioschyzon merolae (CmftsZ1 and CmftsZ2). Phylogenetic analysis revealed that CmftsZ1 is most closely related to the ftsZ genes of α-Proteobacteria, suggesting that it is a mitochondrial-type ftsZ gene, whereas CmftsZ2 is most closely related to the ftsZ genes of cyanobacteria, suggesting that it is a plastid-type ftsZ gene. Southern analysis indicates that CmftsZ1 and CmftsZ2 are both single-copy genes located on chromosome XIV in the C. merolae genome. Northern analysis revealed that both CmftsZ1 and CmftsZ2 are transcribed, and accumulate specifically before cell and organelle division. The results of Western analysis suggest that CmFtsZ1 is localized in mitochondria.


Molecular Genetics and Genomics | 2001

The complete DNA sequence of the mitochondrial genome of Physarum polycephalum

Hiroyoshi Takano; Takashi Abe; Rakusa Sakurai; Y. Moriyama; Yutaka Miyazawa; Hisayoshi Nozaki; Shigeyuki Kawano; Narie Sasaki; Tsuneyoshi Kuroiwa

Abstract. The complete sequence of the mitochondrial DNA (mtDNA) of the true slime mold Physarum polycephalum has been determined. The mtDNA is a circular 62,862-bp molecule with an A+T content of 74.1%. A search with the program BLAST X identified the protein-coding regions. The mitochondrial genome of P. polycephalum was predicted to contain genes coding for 12 known proteins [for three cytochrome c oxidase subunits, apocytochrome b, two F1Fo-ATPase subunits, five NADH dehydrogenase (nad) subunits, and one ribosomal protein], two rRNA genes, and five tRNA genes. However, the predicted ORFs are not all in the same frame, because mitochondrial RNA in P. polycephalum undergoes RNA editing to produce functional RNAs. The nucleotide sequence of an nad7 cDNA showed that 51 nucleotides were inserted at 46 sites in the mRNA. No guide RNA-like sequences were observed in the mtDNA of P. polycephalum. Comparison with reported Physarum mtDNA sequences suggested that sites of RNA editing vary among strains. In the Physarum mtDNA, 20 ORFs of over 300 nucleotides were found and ORFs 14–19 are transcribed.


Molecular Phylogenetics and Evolution | 2002

Evolution of rbcL group IA introns and intron open reading frames within the colonial Volvocales (Chlorophyceae)

Hisayoshi Nozaki; Manabu Takahara; Atsushi Nakazawa; Yoko Kita; Takashi Yamada; Hiroyoshi Takano; Shigeyuki Kawano; Masahiro Kato

Mobile group I introns sometimes contain an open reading frame (ORF) possibly encoding a site-specific DNA endonuclease. However, previous phylogenetic studies have not clearly deduced the evolutionary roles of the group I intron ORFs. In this paper, we examined the phylogeny of group IA2 introns inserted in the position identical to that of the chloroplast-encoded rbcL coding region (rbcL-462 introns) and their ORFs from 13 strains of five genera (Volvox, Pleodorina, Volvulina, Astrephomene, and Gonium) of the colonial Volvocales (Chlorophyceae) and a related unicellular green alga, Vitreochlamys. The rbcL-462 introns contained an intact or degenerate ORF of various sizes except for the Gonium multicoccum rbcL-462 intron. Partial amino acid sequences of some rbcL-462 intron ORFs exhibited possible homology to the endo/excinuclease amino acid terminal domain. The distribution of the rbcL-462 introns is sporadic in the phylogenetic trees of the colonial Volvocales based on the five chloroplast exon sequences (6021 bp). Phylogenetic analyses of the conserved intron sequences resolved that the G. multicoccum rbcL-462 intron had a phylogenetic position separate from those of other colonial volvocalean rbcL-462 introns, indicating the recent horizontal transmission of the intron in the G. multicoccum lineage. However, the combined data set from conserved intron sequences and ORFs from most of the rbcL-462 introns resolved robust phylogenetic relationships of the introns that were consistent with those of the host organisms. Therefore, most of the extant rbcL-462 introns may have been vertically inherited from the common ancestor of their host organisms, whereas such introns may have been lost in other lineages during evolution of the colonial Volvocales. In addition, apparently higher synonymous substitutions than nonsynonymous substitutions in the rbcL-462 intron ORFs indicated that the ORFs might evolve under functional constraint, which could result in homing of the rbcL-462 intron in cases of spontaneous intron loss. On the other hand, the presence of intact to largely degenerate ORFs of the rbcL-462 introns within the three isolates of Gonium viridistellatum and the rare occurrence of the ORF-lacking rbcL-462 intron suggested that the ORFs might degenerate to result in the spontaneous intron loss during a very short evolutionary time following the loss of the ORF function. Thus, the sporadic distribution of the rbcL-462 introns within the colonial Volvocales can be largely explained by an equilibrium between maintenance of the introns by the intron ORF and spontaneous loss of introns when the introns do not have a functional ORF.


Protoplasma | 1991

A mitochondrial plasmid that promotes mitochondrial fusion in Physarum polycephalum

Shigeyuki Kawano; Hiroyoshi Takano; Kimie Mori; Tsuneyoshi Kuroiwa

SummaryWe have identified a novel mitochondrial plasmid of about 16 kbp inPhysarum polycephalum. This plasmid was apparently responsible for promoting mitochondrial fusion. Only in strains carrying the plasmid, small spherical mitochondria fused with one another to form large knotted multinucleate mitochondria which subsequently nderwent fusion between the areas (mt-nuclear) that contained the mitochondrial DNA (mtDNA) derived from individual mitochondria. Several successive mitochondrial divisions followed, accompanied by mt-nuclear divisions. The resulting mitochondria contained recombinant mtDNAs, but the plasmid was transmitted to all mitochondria without any structural change.


Journal of Phycology | 1999

Reexamination of phylogenetic relationships within the colonial Volvocales (Chlorophyta): An analysis of atpB and rbcL gene sequences

Hisayoshi Nozaki; Niji Ohta; Hiroyoshi Takano; Makoto M. Watanabe

The chloroplast‐encoded atpB gene was sequenced from 33 strains representing 28 species of the colonial Volvocales (the Volvocaceae and its relatives) to reexamine phylogenetic relationships as previously deduced by morphological data and rbcL gene sequence data.1128 base pairs in the coding regions of the atpB gene were analyzed by MP, NJ, and ML analyses. Although supported with relatively low bootstrap values (75% and 65% in the NJ and ML analyses, respectively), three anisogamous/oogamous volvocacean genera—Eudorina, Pleodorina, and Volvox, excluding the section Volvox (=Euvolvox, illegitimate name), constituted a large monophyletic group (Eudorina group). Outside the Eudorina group, a robust lineage composed of three species of Volvox sect. Volvox was resolved as in the rbcL gene trees, rejecting the hypothesis of the previous cladistic analysis based on morphological data that the genus Volvox is monophyletic. In addition, the NJ and ML trees suggested that Eudorina is a nonmonophyletic genus as inferred from the morphological data and rbcL gene sequences. Although phylogenetic status of the genus Gonium is ambiguous in the rbcL gene trees and the paraphyly of this genus is resolved in the cladistic analysis based on morphological data, the atpB gene sequence data suggest monophyly of Gonium with relatively low bootstrap values (56–61%) in the NJ and ML trees. On the basis of the combined sequence data (2256 base pairs) from atpB and rbcL genes, Gonium was resolved as a robust monophyletic genus in the NJ and ML trees (with 68–86% bootstrap values), and Eudorina elegans Ehrenberg represented a paraphyletic species positioned most basally within the Eudorina group. However, phylogenetic status and relationships of the families of the colonial Volvocales were still almost ambiguous even in the combined analysis.


Biochimica et Biophysica Acta | 1998

Characterization of a chloroplast isoform of serine acetyltransferase from the thermo-acidiphilic red alga Cyanidioschyzon merolae

Kyoko Toda; Hiroyoshi Takano; Shin-ya Miyagishima; Haruko Kuroiwa; Tsuneyoshi Kuroiwa

We isolated a gene for serine acetyltransferase (SAT), a key enzyme in sulfate assimilation, from the primitive red alga Cyanidioschyzon merolae, an inhabitant of sulfurous hot springs, and designated this gene cmSAT. The N-terminal region of the cmSAT protein has characteristics of a chloroplast targeting peptide. cmSAT protein fused with a 6x histidine tag complemented a SAT deficient Escherichia coli mutant. The protein was purified with its SAT activity, which was inhibited by cysteine, using the high affinity of the histidine tag in an Ni-NTA column. The Km values for acetyl-CoA and l-serine were 0.3 and 0.1 mM, respectively. Southern blotting indicated the existence of other SAT isoforms in C. merolae. A 2.4 kb transcript was always detected when growth was synchronized under a 12-h light/dark cycle. Under these conditions, a 31-kDa protein was always detected on immunoblots, indicating processing of the cmSAT protein and constitutive expression of cmSAT. A 45-kDa protein, thought to be the unprocessed cmSAT protein, was detected in the dark period, from M phase to early G1 phase. No significant change in the level of protein expression was detected under continuous darkness or in a sulfate-deficient medium. Using immunoelectron microscopy, the cmSAT protein was primarily detected in the stroma and a few were detected in the cytoplasm, which indicate that cmSAT protein is transported to and functions in a chloroplast.


Current Genetics | 1995

Isolation, characterization and chromosomal mapping of an actin gene from the primitive red alga Cyanidioschyzon merolae

Hidenori Takahashi; Hiroyoshi Takano; Akiko Yokoyama; Yoshiaki Hara; Shigeyuki Kawano; Akio Toh-e; Tsuneyoshi Kuroiwa

Based on the results of cytological studies, it has been assumed that Cyanidioschyzon merolae does not contain actin genes. However, Southern hybridization of C. merolae cell-nuclear DNA with a yeast actin-gene probe has suggested the presence of an actin gene in the C. merolae genome. In the present study, an actin gene was isolated from a C. merolae genomic library using a yeast actin-gene probe. The C. merolae actin gene has no intron. The predicted actin is composed of 377 amino acids and has an estimated molecular mass of 42003 Da. Southern hybridization indicated that the C. merolae genome contains only one actin gene. This gene is transcribed at a size of 2.4 kb. When Southern hybridization was performed with C. merolae chromosomes separated by pulsed-field gel electrophoresis, a band appeared on unseparated chromosomes XI and XII. A phylogenetic tree based on known eucaryote actin-gene sequences revealed that C. merolae diverged after the division of Protozoa, but before the division of Fungi, Animalia and Chlorophyta.


Current Genetics | 1990

Restriction map of the mitochondrial DNA of the true slime mould, Physarum polycephalum : linear form and long tandem duplication

Hiroyoshi Takano; Shigeyuki Kawano; Yoshitaka Suyama; Tsuneyoshi Kuroiwa

SummaryThe mitochondrial DNA (mtDNA) of the true slime mould, Physarum polycephalum strain CH934xCH938, was isolated and characterized by restriction mapping. Cloned fragments of the mtDNA were assembled and used to construct the restriction map. This map showed that the mtDNA was a linear molecule of 86.0 kb with a tandem duplication of 19.6 kb. The terminal fragments were identified by sensitivity to Bal31 exonuclease. One of the duplications was located at the right end and the other was located 5 kb from the left end. Each duplicated segment contained 26 restriction sites for ten enzymes and these restriction sites were completely conserved in each duplication. Genes for the large and small rRNAs were mapped to positions about 30 kb from the right end of the mtDNA by hybridization with its own rRNAs. With the exception of a probe for the gene for the large rRNA in Tetrahymena pyriformis mtDNA, various probes from the mtDNAs of Saccharomyces cerevisiae and T. pyriformis showed no significant hybridization to any of the restriction fragments of the mtDNA from P. polycephalum.

Collaboration


Dive into the Hiroyoshi Takano's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge