Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Hiroyuki Hioki is active.

Publication


Featured researches published by Hiroyuki Hioki.


The Journal of Neuroscience | 2009

Single Nigrostriatal Dopaminergic Neurons Form Widely Spread and Highly Dense Axonal Arborizations in the Neostriatum

Wakoto Matsuda; Takahiro Furuta; Kouichi Nakamura; Hiroyuki Hioki; Fumino Fujiyama; Ryohachi Arai; Takeshi Kaneko

The axonal arbors of single nigrostriatal dopaminergic neurons were visualized with a viral vector expressing membrane-targeted green fluorescent protein in rat brain. All eight reconstructed tyrosine hydroxylase-positive dopaminergic neurons possessed widely spread and highly dense axonal arborizations in the neostriatum. All of them emitted very little axon collateral arborization outside of the striatum except for tiny arborization in the external pallidum. The striatal axonal bush of each reconstructed dopaminergic neuron covered 0.45–5.7% (mean ± SD = 2.7 ± 1.5%) of the total volume of the neostriatum. Furthermore, all the dopaminergic neurons innervated both striosome and matrix compartments of the neostriatum, although each neurons arborization tended to favor one of these compartments. Our findings demonstrate that individual dopaminergic neurons of the substantia nigra can broadcast a dopamine signal and exert strong influence over a large number of striatal neurons. This divergent signaling should be a key to the function of the nigrostriatal system in dopamine-based learning and suggests that neurodegeneration of individual nigral neurons can affect multiple neurons in the striatum. Thus, these results would also contribute to understanding the clinicopathology of Parkinsons disease and related syndromes.


The Journal of Comparative Neurology | 2002

Immunohistochemical localization of candidates for vesicular glutamate transporters in the rat brain

Takeshi Kaneko; Fumino Fujiyama; Hiroyuki Hioki

Vesicular glutamate transporter 1 (VGluT1) is one of the best markers for glutamatergic neurons, because it accumulates transmitter glutamate into synaptic vesicles. Differentiation‐associated Na+‐dependent inorganic phosphate cotransporter (DNPI) shows 82% amino acid identity to VGluT1, and is another candidate for vesicular glutamate transporters. Here, we report the immunocytochemical localization of DNPI and compare it with that of VGluT1 in the adult rat brain. Both DNPI and VGluT1 immunoreactivities were found mostly in neuropil, presumably in axon terminals, throughout the brain. In the telencephalic regions, intense DNPI immunoreactivity was observed in the glomeruli of the olfactory bulb, layer IV of the neocortex, granular layer of the dentate gyrus, presubiculum, and postsubiculum. In contrast, VGluT1 immunoreactivity was intense in the olfactory tubercle, layers I‐III of the neocortex, piriform cortex, entorhinal cortex, hippocampus, dentate gyrus, and subiculum. In the thalamic nuclei, DNPI‐immunoreactive terminal‐like profiles were much larger than VGluT1‐immunoreactive ones, suggesting that DNPI immunoreactivity was subcortical in origin. DNPI immunoreactivity was much more intense than VGluT1 immunoreactivity in many brainstem and spinal cord regions, except the pontine nuclei, interpeduncular nucleus, cochlear nuclei, and external cuneate nucleus. In the molecular layer of the cerebellar cortex, climbing‐like fibers showed intense DNPI immunoreactivity, whereas neuropil contained dense VGluT1‐immnoreactive deposits. Both DNPI and VGluT1 immunoreactivities were observed as mossy fiber terminal‐like profiles in the cerebellar granular layer. DNPI and VGluT1 immunoreactivities appeared associated with synaptic vesicles in the axon terminals forming asymmetric synapses in several regions examined electron microscopically. The present results indicate that DNPI and VGluT1 are used by different neural components in most, if not all, brain regions, suggesting the complementary functions of DNPI and VGluT1. J. Comp. Neurol. 444:39–62, 2002.


Science Translational Medicine | 2012

Drug Screening for ALS Using Patient-Specific Induced Pluripotent Stem Cells

Naohiro Egawa; Shiho Kitaoka; Kayoko Tsukita; Motoko Naitoh; Kazutoshi Takahashi; Takuya Yamamoto; Fumihiko Adachi; Takayuki Kondo; Keisuke Okita; Isao Asaka; Takashi Aoi; Akira Watanabe; Yasuhiro Yamada; Asuka Morizane; Jun Takahashi; Takashi Ayaki; Hidefumi Ito; Katsuhiro Yoshikawa; Satoko Yamawaki; Shigehiko Suzuki; Dai Watanabe; Hiroyuki Hioki; Takeshi Kaneko; Kouki Makioka; Koichi Okamoto; Hiroshi Takuma; Akira Tamaoka; Kazuko Hasegawa; Takashi Nonaka; Masato Hasegawa

Anacardic acid attenuates mutant TDP-43–associated abnormalities in motor neurons derived from ALS patient–specific induced pluripotent stem cells. A Stepping Stone to ALS Drug Screening Amyotrophic lateral sclerosis (ALS) is an untreatable disorder in which the motor neurons degenerate, resulting in paralysis and death. Induced pluripotent stem cell (iPSC) technology makes it possible to analyze motor neurons from patients with ALS and to use them for screening new candidate drugs. In new work, Egawa et al. obtained motor neurons by inducing differentiation of iPSC lines derived from several patients with familial ALS. These patients carried disease-causing mutations in the gene encoding Tar DNA binding protein-43 (TDP-43). The ALS motor neurons in culture recapitulated cellular and molecular abnormalities associated with ALS. For example, the authors found that mutant TDP-43 in the ALS motor neurons perturbed RNA metabolism and that the motor neurons were more vulnerable to cellular stressors such as arsenite. The researchers then used the ALS motor neurons in a drug screening assay and identified a compound called anacardic acid, a histone acetyltransferase inhibitor, that could reverse some of the ALS phenotypes observed in the motor neurons. The new work provides an encouraging step toward using motor neurons generated from iPSCs derived from ALS patients to learn more about what triggers the death of motor neurons in this disease and to identify new candidate drugs that may be able to slow or reverse the devastating loss of motor neurons. Amyotrophic lateral sclerosis (ALS) is a late-onset, fatal disorder in which the motor neurons degenerate. The discovery of new drugs for treating ALS has been hampered by a lack of access to motor neurons from ALS patients and appropriate disease models. We generate motor neurons from induced pluripotent stem cells (iPSCs) from familial ALS patients, who carry mutations in Tar DNA binding protein-43 (TDP-43). ALS patient–specific iPSC–derived motor neurons formed cytosolic aggregates similar to those seen in postmortem tissue from ALS patients and exhibited shorter neurites as seen in a zebrafish model of ALS. The ALS motor neurons were characterized by increased mutant TDP-43 protein in a detergent-insoluble form bound to a spliceosomal factor SNRPB2. Expression array analyses detected small increases in the expression of genes involved in RNA metabolism and decreases in the expression of genes encoding cytoskeletal proteins. We examined four chemical compounds and found that a histone acetyltransferase inhibitor called anacardic acid rescued the abnormal ALS motor neuron phenotype. These findings suggest that motor neurons generated from ALS patient–derived iPSCs may provide a useful tool for elucidating ALS disease pathogenesis and for screening drug candidates.


The Journal of Neuroscience | 2004

Identification of sympathetic premotor neurons in medullary raphe regions mediating fever and other thermoregulatory functions

Kazuhiro Nakamura; Kiyoshi Matsumura; Thomas Hübschle; Yoshiko Nakamura; Hiroyuki Hioki; Fumino Fujiyama; Zsolt Boldogkoi; Matthias König; Heinz Jürgen Thiel; Rüdiger Gerstberger; Shigeo Kobayashi; Takeshi Kaneko

Sympathetic premotor neurons directly control sympathetic preganglionic neurons (SPNs) in the intermediolateral cell column (IML) of the thoracic spinal cord, and many of these premotor neurons are localized in the medulla oblongata. The rostral ventrolateral medulla contains premotor neurons controlling the cardiovascular conditions, whereas rostral medullary raphe regions are a candidate source of sympathetic premotor neurons for thermoregulatory functions. Here, we show that these medullary raphe regions contain putative glutamatergic neurons and that these neurons directly control thermoregulatory SPNs. Neurons expressing vesicular glutamate transporter 3 (VGLUT3) were distributed in the rat medullary raphe regions, including the raphe magnus and rostral raphe pallidus nuclei, and mostly lacked serotonin immunoreactivity. These VGLUT3-positive neurons expressed Fos in response to cold exposure or to central administration of prostaglandin E2, a pyrogenic mediator. Transneuronal retrograde labeling after inoculation of pseudorabies virus into the interscapular brown adipose tissue (BAT) or the tail indicated that those VGLUT3-expressing medullary raphe neurons innervated these thermoregulatory effector organs multisynaptically through SPNs of specific thoracic segments, and microinjection of glutamate into the IML of the BAT-controlling segments produced BAT thermogenesis. An anterograde tracing study further showed a direct projection of those VGLUT3-expressing medullary raphe neurons to the dendrites of SPNs. Furthermore, intra-IML application of glutamate receptor antagonists blocked BAT thermogenesis triggered by disinhibition of the medullary raphe regions. The present results suggest that VGLUT3-expressing neurons in the medullary raphe regions constitute excitatory neurons that could be categorized as a novel group of sympathetic premotor neurons for thermoregulatory functions, including fever.


Nature Neuroscience | 2010

Ischemia-induced neurogenesis of neocortical layer 1 progenitor cells

Koji Ohira; Takahiro Furuta; Hiroyuki Hioki; Kouichi Nakamura; Eriko Kuramoto; Yasuyo Tanaka; Keiko Shimizu; Takao Oishi; Motoharu Hayashi; Tsuyoshi Miyakawa; Takeshi Kaneko; Shun Nakamura

Adult mammalian neurogenesis occurs in the hippocampus and the olfactory bulb, whereas neocortical adult neurogenesis remains controversial. Several occurrences of neocortical adult neurogenesis in injured neocortex were recently reported, suggesting that neural stem cells (NSCs) or neuronal progenitor cells (NPCs) that can be activated by injury are maintained in the adult brain. However, it is not clear whether or where neocortical NSCs/NPCs exist in the brain. We found NPCs in the neocortical layer 1 of adult rats and observed that their proliferation was highly activated by global forebrain ischemia. Using retrovirus-mediated labeling of layer 1 proliferating cells with membrane-targeted green fluorescent protein, we found that the newly generated neurons were GABAergic and that the neurons were functionally integrated into the neuronal circuitry. Our results suggest that layer 1 NPCs are a source of adult neurogenesis under ischemic conditions.


Neuroscience | 2003

Differential distribution of vesicular glutamate transporters in the rat cerebellar cortex

Hiroyuki Hioki; Fumino Fujiyama; Kousuke Taki; Ryohei Tomioka; Takahiro Furuta; Nobuaki Tamamaki; Takeshi Kaneko

The chemical organization of excitatory axon terminals in the rat cerebellar cortex was examined by immunocytochemistry and in situ hybridization histochemistry of vesicular glutamate transporters 1 and 2 (VGluT1 and VGluT2). Chemical depletion of the inferior olivary complex neurons by 3-acetylpyridine treatment almost completely removed VGluT2 immunoreactivity from the molecular layer, leaving VGluT1 immunoreactivity apparently intact. On the other hand, neuronal deprivation of the cerebellar cortex by kainic acid injection induced a large loss of VGluT1 immunoreactivity in the molecular layer. In the cerebellar granular layer, both VGluT1 and VGluT2 immunoreactivities were found in mossy fiber terminals, and the two immunoreactivities were mostly colocalized in single-axon terminals. Signals for mRNA encoding VGluT2 were found in the inferior olivary complex, and those for VGluT1 and VGluT2 mRNAs were observed in most brainstem precerebellar nuclei sending mossy fibers, such as the pontine, pontine tegmental reticular, lateral reticular and external cuneate nuclei. These results indicate that climbing and parallel fibers selectively use VGluT2 and VGluT1, respectively, whereas mossy fibers apply both VGluT1 and VGluT2 together to accumulate glutamate into synaptic vesicles. Since climbing-fiber and parallel-fiber terminals are known to make depressing and facilitating synapses, respectively, VGluT1 and VGluT2 might have distinct properties associated with those synaptic characteristics. Thus, it would be the next interesting issue to determine whether mossy-fiber terminals co-expressing VGluT1 and VGluT2 show synaptic facilitation or depression.


The Journal of Comparative Neurology | 2005

Postnatal changes of vesicular glutamate transporter (VGluT)1 and VGluT2 immunoreactivities and their colocalization in the mouse forebrain

Kouichi Nakamura; Hiroyuki Hioki; Fumino Fujiyama; Takeshi Kaneko

Vesicular glutamate transporter 1 (VGluT1) and VGluT2 accumulate neurotransmitter glutamate into synaptic vesicles at presynaptic terminals, and their antibodies are thus considered to be a good marker for glutamatergic axon terminals. In the present study, we investigated the postnatal development and maturation of glutamatergic neuronal systems by single‐ and double‐immunolabelings for VGluT1 and VGluT2 in mouse forebrain including the telencephalon and diencephalon. VGluT2 immunoreactivity was widely distributed in the forebrain, particularly in the diencephalon, from postnatal day 0 (P0) to adulthood, suggesting relatively early maturation of VGluT2‐loaded glutamatergic axons. In contrast, VGluT1 immunoreactivity was intense only in the limbic regions at P0, and drastically increased in the other telencephalic and diencephalic regions during three postnatal weeks. Interestingly, VGluT1 immunoreactivity was frequently colocalized with VGluT2 immunoreactivity at single axon terminal‐like profiles in layer IV of the primary somatosensory area from P5 to P10 and in the ventral posteromedial thalamic nucleus from P0 to P14. This was in sharp contrast to the finding that almost no colocalization was found in glomeruli of the olfactory bulb, patchy regions of the caudate‐putamen, and the ventral posterolateral thalamic nucleus, where moderate to intense immunoreactivities for VGluT1 and VGluT2 were intermingled with each other in neuropil during postnatal development. The present results indicate that VGluT2‐loaded glutamatergic axons maturate earlier than VGluT1‐laden axons in the mouse telencephalic and diencephalic regions, and suggest that VGluT1 plays a transient developmental role in some glutamatergic systems that mainly use VGluT2 in the adulthood. J. Comp. Neurol. 492:263–288, 2005.


Nature Neuroscience | 2015

ScaleS: an optical clearing palette for biological imaging

Hiroshi Hama; Hiroyuki Hioki; Kana Namiki; Tetsushi Hoshida; Hiroshi Kurokawa; Fumiyoshi Ishidate; Takeshi Kaneko; Takumi Akagi; Takashi Saito; Takaomi Saido; Atsushi Miyawaki

Optical clearing methods facilitate deep biological imaging by mitigating light scattering in situ. Multi-scale high-resolution imaging requires preservation of tissue integrity for accurate signal reconstruction. However, existing clearing reagents contain chemical components that could compromise tissue structure, preventing reproducible anatomical and fluorescence signal stability. We developed ScaleS, a sorbitol-based optical clearing method that provides stable tissue preservation for immunochemical labeling and three-dimensional (3D) signal rendering. ScaleS permitted optical reconstructions of aged and diseased brain in Alzheimers disease models, including mapping of 3D networks of amyloid plaques, neurons and microglia, and multi-scale tracking of single plaques by successive fluorescence and electron microscopy. Human clinical samples from Alzheimers disease patients analyzed via reversible optical re-sectioning illuminated plaque pathogenesis in the z axis. Comparative benchmarking of contemporary clearing agents showed superior signal and structure preservation by ScaleS. These findings suggest that ScaleS is a simple and reproducible method for accurate visualization of biological tissue.


PLOS ONE | 2011

Anti-Aβ Drug Screening Platform Using Human iPS Cell-Derived Neurons for the Treatment of Alzheimer's Disease

Naoki Yahata; Masashi Asai; Shiho Kitaoka; Kazutoshi Takahashi; Isao Asaka; Hiroyuki Hioki; Takeshi Kaneko; Kei Maruyama; Takaomi C. Saido; Tatsutoshi Nakahata; Takashi Asada; Shinya Yamanaka; Nobuhisa Iwata; Haruhisa Inoue

Background Alzheimers disease (AD) is a neurodegenerative disorder that causes progressive memory and cognitive decline during middle to late adult life. The AD brain is characterized by deposition of amyloid β peptide (Aβ), which is produced from amyloid precursor protein by β- and γ-secretase (presenilin complex)-mediated sequential cleavage. Induced pluripotent stem (iPS) cells potentially provide an opportunity to generate a human cell-based model of AD that would be crucial for drug discovery as well as for investigating mechanisms of the disease. Methodology/Principal Findings We differentiated human iPS (hiPS) cells into neuronal cells expressing the forebrain marker, Foxg1, and the neocortical markers, Cux1, Satb2, Ctip2, and Tbr1. The iPS cell-derived neuronal cells also expressed amyloid precursor protein, β-secretase, and γ-secretase components, and were capable of secreting Aβ into the conditioned media. Aβ production was inhibited by β-secretase inhibitor, γ-secretase inhibitor (GSI), and an NSAID; however, there were different susceptibilities to all three drugs between early and late differentiation stages. At the early differentiation stage, GSI treatment caused a fast increase at lower dose (Aβ surge) and drastic decline of Aβ production. Conclusions/Significance These results indicate that the hiPS cell-derived neuronal cells express functional β- and γ-secretases involved in Aβ production; however, anti-Aβ drug screening using these hiPS cell-derived neuronal cells requires sufficient neuronal differentiation.


Cerebral Cortex | 2009

Two Types of Thalamocortical Projections from the Motor Thalamic Nuclei of the Rat: A Single Neuron-Tracing Study Using Viral Vectors

Eriko Kuramoto; Takahiro Furuta; Kouichi Nakamura; Tomo Unzai; Hiroyuki Hioki; Takeshi Kaneko

The axonal arborization of single motor thalamic neurons was examined in rat brain using a viral vector expressing membrane-targeted palmitoylation site-attached green fluorescent protein (palGFP). We first divided the ventral anterior-ventral lateral motor thalamic nuclei into 1) the rostromedial portion, which was designated inhibitory afferent-dominant zone (IZ) with intense glutamate decarboxylase immunoreactivity and weak vesicular glutamate transporter 2 immunoreactivity, and 2) the caudolateral portion, named excitatory subcortical afferent-dominant zone (EZ) with the reversed immunoreactivity profile. We then labeled 38 motor thalamic neurons in 29 hemispheres by injecting a diluted palGFP-Sindbis virus solution and isolated 10 IZ and EZ neurons for reconstruction. All the reconstructed IZ neurons widely projected not only to the cerebral cortex but also to the neostriatum, whereas the EZ neurons sent axons almost exclusively to the cortex. More interestingly, 47-66% of axon varicosities of IZ neurons were observed in layer I of cortical areas. In contrast, only 2-15% of varicosities of EZ neurons were found in layer I, most varicosities being located in middle layers. These results suggest that 2 forms of information from the basal ganglia and cerebellum are differentially supplied to apical and basal dendrites, respectively, of cortical pyramidal neurons and integrated to produce a motor execution command.

Collaboration


Dive into the Hiroyuki Hioki's collaboration.

Top Co-Authors

Avatar

Takeshi Kaneko

Fourth Military Medical University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge