Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Hiroyuki Hiraishi is active.

Publication


Featured researches published by Hiroyuki Hiraishi.


Cell Reports | 2012

The C-terminal domain of eukaryotic initiation factor 5 promotes start codon recognition by its dynamic interplay with eIF1 and eIF2β.

Rafael E. Luna; Haribabu Arthanari; Hiroyuki Hiraishi; Jagpreed Nanda; Pilar Martin-Marcos; Michelle A. Markus; Barak Akabayov; Alexander G. Milbradt; Lunet E. Luna; Hee-Chan Seo; Sven G. Hyberts; Amr F. Fahmy; Mikhail Reibarkh; David Miles; Patrick R. Hagner; Elizabeth O'Day; Tingfang Yi; Assen Marintchev; Alan G. Hinnebusch; John R. Lorsch; Katsura Asano; Gerhard Wagner

Recognition of the proper start codon on mRNAs is essential for protein synthesis, which requires scanning and involves eukaryotic initiation factors (eIFs) eIF1, eIF1A, eIF2, and eIF5. The carboxyl terminal domain (CTD) of eIF5 stimulates 43S preinitiation complex (PIC) assembly; however, its precise role in scanning and start codon selection has remained unknown. Using nuclear magnetic resonance (NMR) spectroscopy, we identified the binding sites of eIF1 and eIF2β on eIF5-CTD and found that they partially overlapped. Mutating select eIF5 residues in the common interface specifically disrupts interaction with both factors. Genetic and biochemical evidence indicates that these eIF5-CTD mutations impair start codon recognition and impede eIF1 release from the PIC by abrogating eIF5-CTD binding to eIF2β. This study provides mechanistic insight into the role of eIF5-CTDs dynamic interplay with eIF1 and eIF2β in switching PICs from an open to a closed state at start codons.


Molecular and Cellular Biology | 2012

Sequential Eukaryotic Translation Initiation Factor 5 (eIF5) Binding to the Charged Disordered Segments of eIF4G and eIF2β Stabilizes the 48S Preinitiation Complex and Promotes Its Shift to the Initiation Mode

Chingakham Ranjit Singh; Ryosuke Watanabe; Wasimul Q. Chowdhury; Hiroyuki Hiraishi; Marcelo J. Murai; Yasufumi Yamamoto; David Miles; Yuka Ikeda; Masayo Asano; Katsura Asano

ABSTRACT During translation initiation in Saccharomyces cerevisiae, an Arg- and Ser-rich segment (RS1 domain) of eukaryotic translation initiation factor 4G (eIF4G) and the Lys-rich segment (K-boxes) of eIF2β bind three common partners, eIF5, eIF1, and mRNA. Here, we report that both of these segments are involved in mRNA recruitment and AUG recognition by distinct mechanisms. First, the eIF4G-RS1 interaction with the eIF5 C-terminal domain (eIF5-CTD) directly links eIF4G to the preinitiation complex (PIC) and enhances mRNA binding. Second, eIF2β-K-boxes increase mRNA binding to the 40S subunit in vitro in a manner reversed by the eIF5-CTD. Third, mutations altering eIF4G-RS1, eIF2β-K-boxes, and eIF5-CTD restore the accuracy of start codon selection impaired by an eIF2β mutation in vivo, suggesting that the mutual interactions of the eIF segments within the PIC prime the ribosome for initiation in response to start codon selection. We propose that the rearrangement of interactions involving the eIF5-CTD promotes mRNA recruitment through mRNA binding by eIF4G and eIF2β and assists the start codon-induced release of eIF1, the major antagonist of establishing tRNAiMet:mRNA binding to the P site.


Biochemistry | 2013

The interaction between eukaryotic initiation factor 1A and eIF5 retains eIF1 within scanning preinitiation complexes.

Rafael E. Luna; Haribabu Arthanari; Hiroyuki Hiraishi; Barak Akabayov; Leiming Tang; Christian Cox; Michelle A. Markus; Lunet E. Luna; Yuka Ikeda; Ryosuke Watanabe; Edward Bedoya; Cathy Yu; Shums Alikhan; Gerhard Wagner; Katsura Asano

Scanning of the mRNA transcript by the preinitiation complex (PIC) requires a panel of eukaryotic initiation factors, which includes eIF1 and eIF1A, the main transducers of stringent AUG selection. eIF1A plays an important role in start codon recognition; however, its molecular contacts with eIF5 are unknown. Using nuclear magnetic resonance, we unveil eIF1As binding surface on the carboxyl-terminal domain of eIF5 (eIF5-CTD). We validated this interaction by observing that eIF1A does not bind to an eIF5-CTD mutant, altering the revealed eIF1A interaction site. We also found that the interaction between eIF1A and eIF5-CTD is conserved between humans and yeast. Using glutathione S-transferase pull-down assays of purified proteins, we showed that the N-terminal tail (NTT) of eIF1A mediates the interaction with eIF5-CTD and eIF1. Genetic evidence indicates that overexpressing eIF1 or eIF5 suppresses the slow growth phenotype of eIF1A-NTT mutants. These results suggest that the eIF1A-eIF5-CTD interaction during scanning PICs contributes to the maintenance of eIF1 within the open PIC.


Cell Reports | 2017

Molecular landscape of the ribosome pre-initiation complex during mRNA scanning: structural role for eIF3c and its control by eIF5

Eiji Obayashi; Rafael E. Luna; Takashi Nagata; Pilar Martin-Marcos; Hiroyuki Hiraishi; Chingakham Ranjit Singh; Jan P. Erzberger; Fan Zhang; Haribabu Arthanari; Jacob Morris; Riccardo Pellarin; Chelsea Moore; Ian Harmon; Evangelos Papadopoulos; Hisashi Yoshida; Mahmoud L. Nasr; Satoru Unzai; Brytteny Thompson; Eric Aube; Samantha Hustak; Florian Stengel; Eddie Dagraca; Asokan Ananbandam; Philip Gao; Takeshi Urano; Alan G. Hinnebusch; Gerhard Wagner; Katsura Asano

During eukaryotic translation initiation, eIF3 binds the solvent-accessible side of the 40S ribosome and recruits the gate-keeper protein eIF1 and eIF5 to the decoding center. This is largely mediated by the N-terminal domain (NTD) of eIF3c, which can be divided into three parts: 3c0, 3c1, and 3c2. The N-terminal part, 3c0, binds eIF5 strongly but only weakly to the ribosome-binding surface of eIF1, whereas 3c1 and 3c2 form a stoichiometric complex with eIF1. 3c1 contacts eIF1 through Arg-53 and Leu-96, while 3c2 faces 40S protein uS15/S13, to anchor eIF1 to the scanning pre-initiation complex (PIC). We propose that the 3c0:eIF1 interaction diminishes eIF1 binding to the 40S, whereas 3c0:eIF5 interaction stabilizes the scanning PIC by precluding this inhibitory interaction. Upon start codon recognition, interactions involving eIF5, and ultimately 3c0:eIF1 association, facilitate eIF1 release. Our results reveal intricate molecular interactions within the PIC, programmed for rapid scanning-arrest at the start codon.


Nucleic Acids Research | 2016

Overexpression of eIF5 or its protein mimic 5MP perturbs eIF2 function and induces ATF4 translation through delayed re-initiation

Caitlin Kozel; Brytteny Thompson; Samantha Hustak; Chelsea Moore; Akio Nakashima; Chingakham Ranjit Singh; Megan Reid; Christian Cox; Evangelos Papadopoulos; Rafael E. Luna; Abbey Anderson; Hideaki Tagami; Hiroyuki Hiraishi; Emily Archer Slone; Ken-ichi Yoshino; Masayo Asano; Sarah Gillaspie; Jerome C. Nietfeld; Jean Pierre Perchellet; Stefan Rothenburg; Hisao Masai; Gerhard Wagner; Alexander Beeser; Ushio Kikkawa; Sherry D. Fleming; Katsura Asano

ATF4 is a pro-oncogenic transcription factor whose translation is activated by eIF2 phosphorylation through delayed re-initiation involving two uORFs in the mRNA leader. However, in yeast, the effect of eIF2 phosphorylation can be mimicked by eIF5 overexpression, which turns eIF5 into translational inhibitor, thereby promoting translation of GCN4, the yeast ATF4 equivalent. Furthermore, regulatory protein termed eIF5-mimic protein (5MP) can bind eIF2 and inhibit general translation. Here, we show that 5MP1 overexpression in human cells leads to strong formation of 5MP1:eIF2 complex, nearly comparable to that of eIF5:eIF2 complex produced by eIF5 overexpression. Overexpression of eIF5, 5MP1 and 5MP2, the second human paralog, promotes ATF4 expression in certain types of human cells including fibrosarcoma. 5MP overexpression also induces ATF4 expression in Drosophila. The knockdown of 5MP1 in fibrosarcoma attenuates ATF4 expression and its tumor formation on nude mice. Since 5MP2 is overproduced in salivary mucoepidermoid carcinoma, we propose that overexpression of eIF5 and 5MP induces translation of ATF4 and potentially other genes with uORFs in their mRNA leaders through delayed re-initiation, thereby enhancing the survival of normal and cancer cells under stress conditions.


Molecular and Cellular Biology | 2013

Interaction between 25S rRNA A Loop and Eukaryotic Translation Initiation Factor 5B Promotes Subunit Joining and Ensures Stringent AUG Selection

Hiroyuki Hiraishi; Byung-Sik Shin; Tsuyoshi Udagawa; Naoki Nemoto; Wasimul Q. Chowdhury; Jymie Graham; Christian Cox; Megan Reid; Susan J. Brown; Katsura Asano

ABSTRACT In yeast, 25S rRNA makes up the major mass and shape of the 60S ribosomal subunit. During the last step of translation initiation, eukaryotic initiation factor 5B (eIF5B) promotes the 60S subunit joining with the 40S initiation complex (IC). Malfunctional 60S subunits produced by misfolding or mutation may disrupt the 40S IC stalling on the start codon, thereby altering the stringency of initiation. Using several point mutations isolated by random mutagenesis, here we studied the role of 25S rRNA in start codon selection. Three mutations changing bases near the ribosome surface had strong effects, allowing the initiating ribosomes to skip both AUG and non-AUG codons: C2879U and U2408C, altering the A loop and P loop, respectively, of the peptidyl transferase center, and G1735A, mapping near a Eukarya-specific bridge to the 40S subunit. Overexpression of eIF5B specifically suppressed the phenotype caused by C2879U, suggesting functional interaction between eIF5B and the A loop. In vitro reconstitution assays showed that C2879U decreased eIF5B-catalyzed 60S subunit joining with a 40S IC. Thus, eIF5B interaction with the peptidyl transferase center A loop increases the accuracy of initiation by stabilizing the overall conformation of the 80S initiation complex. This study provides an insight into the effect of ribosomal mutations on translation profiles in eukaryotes.


Nucleic Acids Research | 2014

Essential role of eIF5-mimic protein in animal development is linked to control of ATF4 expression

Hiroyuki Hiraishi; Jamie Oatman; Sherry L. Haller; Logan Blunk; Benton McGivern; Jacob Morris; Evangelos Papadopoulos; Wade Gutierrez; Michelle Gordon; Wahaj Bokhari; Yuka Ikeda; David Miles; John P. Fellers; Masayo Asano; Gerhard Wagner; Loubna Tazi; Stefan Rothenburg; Susan J. Brown; Katsura Asano

Translational control of transcription factor ATF4 through paired upstream ORFs (uORFs) plays an important role in eukaryotic gene regulation. While it is typically induced by phosphorylation of eIF2α, ATF4 translation can be also induced by expression of a translational inhibitor protein, eIF5-mimic protein 1 (5MP1, also known as BZW2) in mammals. Here we show that the 5MP gene is maintained in eukaryotes under strong purifying selection, but is uniquely missing in two major phyla, nematoda and ascomycota. The common function of 5MP from protozoa, plants, fungi and insects is to control translation by inhibiting eIF2. The affinity of human 5MP1 to eIF2β was measured as being equivalent to the published value of human eIF5 to eIF2β, in agreement with effective competition of 5MP with eIF5 for the main substrate, eIF2. In the red flour beetle, Tribolium castaneum, RNA interference studies indicate that 5MP facilitates expression of GADD34, a downstream target of ATF4. Furthermore, both 5MP and ATF4 are essential for larval development. Finally, 5MP and the paired uORFs allowing ATF4 control are conserved in the entire metazoa except nematoda. Based on these findings, we discuss the phylogenetic and functional linkage between ATF4 regulation and 5MP expression in this group of eukaryotes.


Nucleic Acids Research | 2017

Competition between translation initiation factor eIF5 and its mimic protein 5MP determines non-AUG initiation rate genome-wide

Leiming Tang; Jacob Morris; Ji Wan; Chelsea Moore; Yoshihiko Fujita; Sarah Gillaspie; Eric Aube; Jagpreet S. Nanda; Maud Marques; Maïka Jangal; Abbey Anderson; Christian Cox; Hiroyuki Hiraishi; Leiming Dong; Hirohide Saito; Chingakham Ranjit Singh; Michael Witcher; Ivan Topisirovic; Shu-Bing Qian; Katsura Asano

Abstract In the human genome, translation initiation from non-AUG codons plays an important role in various gene regulation programs. However, mechanisms regulating the non-AUG initiation rate remain poorly understood. Here, we show that the non-AUG initiation rate is nearly consistent under a fixed nucleotide context in various human and insect cells. Yet, it ranges from <1% to nearly 100% compared to AUG translation, depending on surrounding sequences, including Kozak, and possibly additional nucleotide contexts. Mechanistically, this range of non-AUG initiation is controlled in part, by the eIF5-mimic protein (5MP). 5MP represses non-AUG translation by competing with eIF5 for the Met-tRNAi-binding factor eIF2. Consistently, eIF5 increases, whereas 5MP decreases translation of NAT1/EIF4G2/DAP5, whose sole start codon is GUG. By modulating eIF5 and 5MP1 expression in combination with ribosome profiling we identified a handful of previously unknown non-AUG initiation sites, some of which serve as the exclusive start codons. If the initiation rate for these codons is low, then an AUG-initiated downstream ORF prevents the generation of shorter, AUG-initiated isoforms. We propose that the homeostasis of the non-AUG translatome is maintained through balanced expression of eIF5 and 5MP.


Translation (Austin, Tex.) | 2013

Random mutagenesis of yeast 25S rRNA identify bases critical for 60S subunit structural integrity and function

Naoki Nemoto; Tsuyoshi Udagawa; Wasimul Q. Chowdhury; Makoto Kitabatake; Byung-shik Shin; Hiroyuki Hiraishi; Suzhi Wang; Chingakham Ranjit Singh; Susan J. Brown; Mutsuhito Ohno; Katsura Asano

In yeast Saccharomyces cerevisiae, 25S rRNA makes up the major mass and shape of the 60S ribosomal subunit. During translation initiation, the 60S subunit joins the 40S initiation complex, producing the 80S initiation complex. During elongation, the 60S subunit binds the CCA-ends of aminoacyl- and peptidyl-tRNAs at the A-loop and P-loop, respectively, transferring the peptide onto the α-amino group of the aminoacyl-tRNA. To study the role of 25S rRNA in translation in vivo, we randomly mutated 25S rRNA and isolated and characterized seven point mutations that affected yeast cell growth and polysome profiles. Four of these mutations, G651A, A1435U, A1446G and A1587G, change a base involved in base triples crucial for structural integrity. Three other mutations change bases near the ribosomal surface: C2879U and U2408C alter the A-loop and P-loop, respectively, and G1735A maps near a Eukarya-specific bridge to the 40S subunit. By polysome profiling in mmslΔ mutants defective in nonfunctional 25S rRNA decay, we show that some of these mutations are defective in both the initiation and elongation phases of translation. Of the mutants characterized, C2879U displays the strongest defect in translation initiation. The ribosome transit-time assay directly shows that this mutation is also defective in peptide elongation/termination. Thus, our genetic analysis not only identifies bases critical for structural integrity of the 60S subunit, but also suggests a role for bases near the peptidyl transferase center in translation initiation.


Molecular and Cellular Biology | 2018

Dynamic Interaction of Eukaryotic Initiation Factor 4G1 (eIF4G1) with eIF4E and eIF1 Underlies Scanning-Dependent and -Independent Translation

Ora Haimov; Urmila Sehrawat; Ana Tamarkin-Ben Harush; Anat Bahat; Anna Uzonyi; Alexander Will; Hiroyuki Hiraishi; Katsura Asano; Rivka Dikstein

Collaboration


Dive into the Hiroyuki Hiraishi's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

David Miles

Kansas State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alan G. Hinnebusch

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge