Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Hiroyuki Kanzaki is active.

Publication


Featured researches published by Hiroyuki Kanzaki.


Journal of Dental Research | 2001

Dual Regulation of Osteoclast Differentiation by Periodontal Ligament Cells through RANKL Stimulation and OPG Inhibition

Hiroyuki Kanzaki; Mirei Chiba; Yoshinobu Shimizu; Hideo Mitani

Periodontal ligament (PDL) cells play an important role in maintaining the homeostasis of periodontal tissues. However, it is not known how PDL cells contribute to osteoclastogenesis. In this study, we examined the consequences of cell-to-cell interactions between peripheral blood mononuclear cells (PBMCs) and PDL cells during osteoclastogenesis. PBMCs were co-cultured directly or indirectly with PDL cells for two to four weeks. PBMCs that were directly co-cultured with PDL cells formed significantly more resorption pits on dentin slices than did PBMCs that were cultured alone. However, soluble factor(s) produced from PDL cells inhibited the formation of tartrate-resistant acid phosphatase (TRAP)-positive multinucleated cells. Furthermore, PDL cells expressed both receptor activator nuclear factor kappa B ligand (RANKL) and osteoprotegerin (OPG) mRNA. In conclusion, PDL cells support osteoclastogenesis through cell-to-cell contact. PDL cells might regulate osteoclastogenesis by opposing mechanisms-stimulation of resorptive activity by RANKL and inhibition by OPG-thus affecting processes such as periodontitis and orthodontic tooth movement.


Gene Therapy | 2006

Local RANKL gene transfer to the periodontal tissue accelerates orthodontic tooth movement

Hiroyuki Kanzaki; Mirei Chiba; K. Arai; Ichiro Takahashi; Naoto Haruyama; Makoto Nishimura; H. Mitani

It has been reported that not only selective alveolar-bone resorption, but also receptor activator of nuclear factor kappa B ligand (RANKL) expression is induced on the compressed side of an orthodontically moving tooth. Numerous reports have described the pharmacological acceleration of tooth movement (TM) through the activation of osteoclasts. However, because of rapid flush out by blood circulation, daily systemic administration or daily local injection is needed. Previously, we discovered that every-3-days OPG gene transfer to the periodontal-tissue inhibited RANKL-mediated osteoclastogenesis and diminished experimental TM. Therefore, we hypothesized that local RANKL gene transfer into the periodontal tissue would accelerate TM. The upper first molars of 6-week-old male Wistar rats were moved palatally using fixed orthodontic wires. The inactivated hemagglutinating-virus of Japan (HVJ) envelope vector containing the mouse RANKL expression plasmid was injected periodically into the palatal periodontal tissue of the upper first molars during TM. Local RANKL gene transfer significantly enhanced RANKL expression and osteoclastogenesis in periodontal tissue without any systemic effects. The TM rate was significantly increased in the RANKL gene transfer side. In conclusion, we demonstrated that transfer of the RANKL gene to the periodontal-tissue activated osteoclastogenesis and accelerated the amount of experimental TM. Local RANKL gene transfer might be a useful tool not only for shortening orthodontic treatment, but also for moving ankylosed teeth where teeth, fuse to the surrounding bone.


Journal of Dental Research | 2004

Local OPG Gene Transfer to Periodontal Tissue Inhibits Orthodontic Tooth Movement

Hiroyuki Kanzaki; Mirei Chiba; Ichiro Takahashi; Naoto Haruyama; Makoto Nishimura; H. Mitani

Previously, we discovered that RANKL expression is induced in compressed periodontal ligament cells, and that this promotes osteoclastogenesis on the compression side in orthodontic tooth movement. We hypothesized that local OPG gene transfer to the periodontium would neutralize the RANKL activity induced by mechanical compressive force, thereby inhibiting osteoclastogenesis and diminishing tooth movement. The upper first molars of six-week-old male Wistar rats were moved palatally by means of a fixed-orthodontic wire. A mouse OPG expression plasmid [pcDNA3.1(+)-mOPG] was constructed, and the production of functional OPG protein was confirmed in vitro. The inactivated HVJ envelope vector containing pcDNA3.1(+)-mOPG or PBS was injected periodically into the palatal periodontal tissue of upper first molars. When this local OPG gene transfer was performed, OPG production was induced, and osteoclastogenesis was inhibited. Local OPG gene transfer significantly diminished tooth movement. In this study, we report that OPG gene transfer to periodontal tissue inhibited RANKL-mediated osteoclastogenesis and inhibited experimental tooth movement.


Journal of Dental Research | 2006

Cyclical Tensile Force on Periodontal Ligament Cells Inhibits Osteoclastogenesis through OPG Induction

Hiroyuki Kanzaki; Mirei Chiba; Aya Sato; A. Miyagawa; K. Arai; S. Nukatsuka; H. Mitani

The periodontal ligament (PDL) maintains homeostasis of periodontal tissue under mechanical tensile-loading caused by mastication. Occlusal load inhibits atrophic alveolar bone resorption. Previously, we discovered that continuous compressive force on PDL cells induced osteoclastogenesis-supporting activity, with up-regulation of RANKL. We hypothesized that, unlike compression, cyclical tensile force up-regulates OPG expression in PDL cells via TGF-beta up-regulation, and does not induce osteoclastogenesis-supporting activity. PDL cells were mechanically stimulated by cyclical tensile force in vitro. The conditioned media of PDL cells that had been subjected to cyclical tensile force inhibited osteoclastogenesis. Cyclical tensile force up-regulated not only RANKL mRNA expression, but also OPG mRNA expression in PDL cells. Tensile force up-regulated TGF-beta expression in PDL cells as well. Administration of neutralizing antibodies to TGF-beta inhibited OPG up-regulation under cyclical tensile-force stimulation in a dose-dependent manner. Additionally, the osteoclastogenesis-inhibitory effect of the conditioned media of PDL cells under cyclical tensile force was partially rescued by the administration of TGF-beta neutralizing antibodies. In conclusion, tensile force inhibited the osteoclastogenesis-supporting activity of PDL cells by inducing the up-regulation of OPG via TGF-beta stimulation.


Journal of Dental Research | 2006

Clodronate Inhibits PGE2 Production in Compressed Periodontal Ligament Cells

L. Liu; K. Igarashi; Hiroyuki Kanzaki; Mirei Chiba; Hisashi Shinoda; H. Mitani

Periodontal ligament (PDL) cells play an essential role in orthodontic tooth movement. We recently reported that clodronate, a non-N-containing bisphosphonate, strongly inhibited tooth movement in rats, and thus could be a useful adjunct for orthodontic treatment. However, it is not clear how clodronate affects the responses of PDL cells to orthodontic force. In this study, we hypothesized that clodronate prevents the mechanical stress-induced production of prostaglandin E2 (PGE2), interleukin-1β (IL-1β), and nitric oxide (NO) in human PDL cells. A compressive stimulus caused a striking increase in PGE2 production, while the responses of IL-1β and NO were less marked. Clodronate concentration-dependently inhibited the stress-induced production of PGE2. Clodronate also strongly inhibited stress-induced gene expression for COX-2 and RANKL. These results suggest that the inhibitory effects of clodronate on tooth movement and osteoclasts may be due, at least in part, to the inhibition of COX-2-dependent PGE2 production and RANKL expression in PDL cells.


American Journal of Orthodontics and Dentofacial Orthopedics | 2012

Local osteoprotegerin gene transfer inhibits relapse of orthodontic tooth movement

Ningning Zhao; Jiuxiang Lin; Hiroyuki Kanzaki; Juhua Ni; Zhibin Chen; Wei Liang; Yan Liu

INTRODUCTION In orthodontic treatment, teeth can relapse after tooth movement without retention. The aim of this study was to evaluate the inhibition effects of local osteoprotegerin (OPG) gene transfer on orthodontic relapse. METHODS Eighteen male Wistar rats were divided into 3 groups. The maxillary right first molars of all animals were subjected to orthodontic force and moved mesially. Three weeks later, the force was removed, and the teeth relapsed. During the 2-week relapse period, the 3 groups of rats received local OPG gene transfer (experimental group), mock vector transfer (mock group), and no injections (control group). Tooth movement and relapse were measured by using palatal superimpositions of 3-dimensional digital models. Histomorphometric analysis was used to quantify osteoclasts, and microcomputed tomography analysis was done to quantify the alveolar bone and the tibia. RESULTS Relapse was significantly inhibited and the number of osteoclasts was reduced in the experimental group. On the other hand, bone mineral density and bone volume fraction of alveolar bone were significantly increased. Bone mineral density and bone volume fraction of the tibia showed no significant difference between the groups. CONCLUSIONS Local OPG gene transfer to periodontal tissues could inhibit relapse after orthodontic tooth movement, through the inhibition of osteoclastogenesis.


Journal of Dental Research | 2015

Nrf2 Activation Attenuates Both Orthodontic Tooth Movement and Relapse

Hiroyuki Kanzaki; Fumiaki Shinohara; K. Itohiya-Kasuya; Misao Ishikawa; Yoshiki Nakamura

During orthodontic tooth movement, osteoclasts resorb the alveolar bone at the compress side of periodontium. Reactive oxygen species (ROS) works as intracellular signaling molecules of RANKL during osteoclastogenesis, although ROS has cytotoxicity against cells such as lipid oxidation. To deal with oxidative stress, cells have a defense system that is scavenging ROS by augmented antioxidative stress enzymes via transcriptional regulation with nuclear factor E2-related factor 2 (Nrf2). Previously, we reported that augmented antioxidative stress enzymes by Nrf2-gene transfer inhibited bone destruction. In the present study, we examined the effects of Nrf2 activation on osteoclastogenesis and, thereby, orthodontic tooth movement and orthodontic relapse. Mouse macrophage cell line RAW264.7 cells were used as osteoclast progenitor cells and stimulated with recombinant RANKL (100 ng/mL) with or without Nrf2 activator sulforaphane (SFN) and epigallocatechin gallate (EGCG) or ROS scavenger catechin. Osteoclastogenesis, resorption activity, and osteoclast marker gene expression were examined. Intracellular ROS was analyzed by flow cytometry. Maxillary first molars of C57BL6 male mice were moved palatally with 0.012-inch NiTi wire (100-mN force); SFN or EGCG was injected into the palatal gingiva once a week; and phosphate buffered saline was injected on the contralateral side. Tooth movement was monitored using a stone model with precise impression, and the amount of the tooth movement was compared among groups. SFN and EGCG significantly, but catechin weakly, inhibited RANKL-mediated osteoclastogenesis in vitro. Western blot analysis revealed that SFN and EGCG augmented the nuclear translocation of Nrf2 and the expression of anti-oxidative stress enzymes such as HO-1, although catechin did not. SFN and EGCG significantly, but catechin weakly, attenuated the intracellular ROS. Finally, animal experiment revealed that both SFN and EGCG successfully inhibited the orthodontic tooth movement. Additionally, SFN inhibited the relapse. These results suggest that Nrf2 activation could be therapeutic target for the anchorage enforcement in orthodontic treatment and pharmacologic retention against relapse.


The FASEB Journal | 2017

RANKL induces Bach1 nuclear import and attenuates Nrf2-mediated antioxidant enzymes, thereby augmenting intracellular reactive oxygen species signaling and osteoclastogenesis in mice

Hiroyuki Kanzaki; Fumiaki Shinohara; Kanako Itohiya; Yuuki Yamaguchi; Yuta Katsumata; Masazumi Matsuzawa; Sari Fukaya; Yutaka Miyamoto; Satoshi Wada; Yoshiki Nakamura

Reactive oxygen species (ROS) play a role in intracellular signaling during osteoclastogenesis. We previously reported that transcriptional factor nuclear factor E2‐related factor 2 (Nrf2) was exported from the nucleus to the cytoplasm by receptor activator of nuclear factor‐κB ligand (RANKL), and that Nrf2 negatively regulated osteoclastogenesis via antioxidant enzyme up‐regulation. Knockout mice of BTB and CNC homology 1 (Bach1)‐the competitor for Nrf2 in transcriptional regulation‐was known to attenuate RANKL‐mediated osteoclastogenesis, although the mechanism remains unclear. Therefore, we hypothesized that RANKL could be involved in the nuclear translocation of Bach1, which would attenuate Nrf2‐mediated antioxidant enzymes, thereby augmenting intracellular ROS signaling in osteoclasts. RANKL induced Bach1 nuclear import and Nrf2 nuclear export. Induction of Bach1 nuclear export increased Nrf2 nuclear import, augmented antioxidant enzyme expression, and, thus, diminished RANKL‐mediated osteoclastogenesis via attenuated intracellular ROS signaling. Finally, an in vivo mouse bone destruction model clearly demonstrated that induction of Bach1 nuclear export inhibited bone destruction. In this study, we report that RANKL favors osteoclastogenesis via attenuation of Nrf2‐mediated antioxidant enzyme expression by competing with Bach1 nuclear accumulation. Of importance, induction of Bach1 nuclear export activates Nrf2‐dependent antioxidant enzyme expression, thereby attenuating osteoclastogenesis. Bach1 nuclear export might be a therapeutic target for such bone destructive diseases as rheumatoid arthritis, osteoporosis, and periodontitis.—Kanzaki, H., Shinohara, F., Itohiya, K., Yamaguchi, Y., Katsumata, Y., Matsuzawa, M., Fukaya, S., Miyamoto, Y., Wada, S., Nakamura, Y. RANKL induces Bach1 nuclear import and attenuates Nrf2‐mediated antioxidant enzymes, thereby augmenting intracellular reactive oxygen species signaling and osteoclastogenesis in mice. FASEB J. 31, 781–792 (2017). http://www.fasebj.org


Ultrasound in Medicine and Biology | 2015

Delivery of Molecules to the Lymph Node via Lymphatic Vessels Using Ultrasound and Nano/Microbubbles

Shigeki Kato; Yuko Shirai; Hiroyuki Kanzaki; Maya Sakamoto; Shiro Mori; Tetsuya Kodama

Lymph node (LN) dissection is the primary option for head and neck cancer when imaging modalities and biopsy confirm metastasis to the sentinel LN. However, there are no effective alternative treatments to dissection for LN metastasis. Here, we describe a novel drug delivery system combining nano/microbubbles (NMBs) with ultrasound (US) that exhibits considerable potential for the delivery of exogenous molecules into LNs through the lymphatic vessels. A solution containing fluorophores (as a model of a therapeutic molecule) and NMBs was injected into the subiliac LNs of MXH10/Mo-lpr/lpr mice, which develop systemic swelling of LNs (up to 13 mm in diameter, similar to human LNs). It was found that the NMBs were delivered to the entire area of the proper axillary LN (proper-ALN) via the lymphatic channels and that these were retained there for more than 8 min. Furthermore, exposure to US in the presence of NMBs enhanced the delivery of fluorophores into the lymphocytes near the lymphatic channels, compared with exposure to US in the absence of NMBs. It is proposed that a system using US and NMBs to deliver therapeutic drugs via lymphatic vessels can serve as a new treatment method for LN metastasis.


Redox biology | 2016

Molecular regulatory mechanisms of osteoclastogenesis through cytoprotective enzymes

Hiroyuki Kanzaki; Fumiaki Shinohara; Itohiya Kanako; Yuuki Yamaguchi; Sari Fukaya; Yutaka Miyamoto; Satoshi Wada; Yoshiki Nakamura

It has been reported that reactive oxygen species (ROS), such as hydrogen peroxide and superoxide, take part in osteoclast differentiation as intra-cellular signaling molecules. The current assumed signaling cascade from RANK to ROS production is RANK, TRAF6, Rac1, and then Nox. The target molecules of ROS in RANKL signaling remain unclear; however, several reports support the theory that NF-κB signaling could be the crucial downstream signaling molecule of RANKL-mediated ROS signaling. Furthermore, ROS exert cytotoxic effects such as peroxidation of lipids and phospholipids and oxidative damage to proteins and DNA. Therefore, cells have several protective mechanisms against oxidative stressors that mainly induce cytoprotective enzymes and ROS scavenging. Three well-known mechanisms regulate cytoprotective enzymes including Nrf2-, FOXO-, and sirtuin-dependent mechanisms. Several reports have indicated a crosslink between FOXO- and sirtuin-dependent regulatory mechanisms. The agonists against the regulatory mechanisms are reported to induce these cytoprotective enzymes successfully. Some of them inhibit osteoclast differentiation and bone destruction via attenuation of intracellular ROS signaling. In this review article, we discuss the above topics and summarize the current information available on the relationship between cytoprotective enzymes and osteoclastogenesis.

Collaboration


Dive into the Hiroyuki Kanzaki's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge