Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Hiroyuki Katoh is active.

Publication


Featured researches published by Hiroyuki Katoh.


Nature Medicine | 2006

Conditional ablation of Stat3 or Socs3 discloses a dual role for reactive astrocytes after spinal cord injury.

Seiji Okada; Masaya Nakamura; Hiroyuki Katoh; Tamaki Miyao; Takuya Shimazaki; Ken J. Ishii; Junichi Yamane; Akihiko Yoshimura; Yukihide Iwamoto; Yoshiaki Toyama; Hideyuki Okano

In the injured central nervous system (CNS), reactive astrocytes form a glial scar and are considered to be detrimental for axonal regeneration, but their function remains elusive. Here we show that reactive astrocytes have a crucial role in wound healing and functional recovery by using mice with a selective deletion of the protein signal transducer and activator of transcription 3 (Stat3) or the protein suppressor of cytokine signaling 3 (Socs3) under the control of the Nes promoter-enhancer (Nes-Stat3−/−, Nes-Socs3−/−). Reactive astrocytes in Nes-Stat3−/− mice showed limited migration and resulted in markedly widespread infiltration of inflammatory cells, neural disruption and demyelination with severe motor deficits after contusive spinal cord injury (SCI). On the contrary, we observed rapid migration of reactive astrocytes to seclude inflammatory cells, enhanced contraction of lesion area and notable improvement in functional recovery in Nes-Socs3−/− mice. These results suggest that Stat3 is a key regulator of reactive astrocytes in the healing process after SCI, providing a potential target for intervention in the treatment of CNS injury.


Proceedings of the National Academy of Sciences of the United States of America | 2010

Therapeutic potential of appropriately evaluated safe-induced pluripotent stem cells for spinal cord injury

Osahiko Tsuji; Kyoko Miura; Yohei Okada; Kanehiro Fujiyoshi; Masahiko Mukaino; Narihito Nagoshi; Kazuya Kitamura; Gentaro Kumagai; Makoto Nishino; Shuta Tomisato; Hisanobu Higashi; Toshihiro Nagai; Hiroyuki Katoh; Kazuhisa Kohda; Yumi Matsuzaki; Michisuke Yuzaki; Eiji Ikeda; Yoshiaki Toyama; Masaya Nakamura; Shinya Yamanaka; Hideyuki Okano

Various types of induced pluripotent stem (iPS) cells have been established by different methods, and each type exhibits different biological properties. Before iPS cell-based clinical applications can be initiated, detailed evaluations of the cells, including their differentiation potentials and tumorigenic activities in different contexts, should be investigated to establish their safety and effectiveness for cell transplantation therapies. Here we show the directed neural differentiation of murine iPS cells and examine their therapeutic potential in a mouse spinal cord injury (SCI) model. “Safe” iPS-derived neurospheres, which had been pre-evaluated as nontumorigenic by their transplantation into nonobese diabetic/severe combined immunodeficiency (NOD/SCID) mouse brain, produced electrophysiologically functional neurons, astrocytes, and oligodendrocytes in vitro. Furthermore, when the safe iPS-derived neurospheres were transplanted into the spinal cord 9 d after contusive injury, they differentiated into all three neural lineages without forming teratomas or other tumors. They also participated in remyelination and induced the axonal regrowth of host 5HT+ serotonergic fibers, promoting locomotor function recovery. However, the transplantation of iPS-derived neurospheres pre-evaluated as “unsafe” showed robust teratoma formation and sudden locomotor functional loss after functional recovery in the SCI model. These findings suggest that pre-evaluated safe iPS clone-derived neural stem/progenitor cells may be a promising cell source for transplantation therapy for SCI.


Cell Stem Cell | 2008

Ontogeny and Multipotency of Neural Crest-Derived Stem Cells in Mouse Bone Marrow, Dorsal Root Ganglia, and Whisker Pad

Narihito Nagoshi; Shinsuke Shibata; Yoshiaki Kubota; Masaya Nakamura; Yasuo Nagai; Etsuko Satoh; Satoru Morikawa; Yohei Okada; Yo Mabuchi; Hiroyuki Katoh; Seiji Okada; Keiichi Fukuda; Toshio Suda; Yumi Matsuzaki; Yoshiaki Toyama; Hideyuki Okano

Although recent reports have described multipotent, self-renewing, neural crest-derived stem cells (NCSCs), the NCSCs in various adult rodent tissues have not been well characterized or compared. Here we identified NCSCs in the bone marrow (BM), dorsal root ganglia, and whisker pad and prospectively isolated them from adult transgenic mice encoding neural crest-specific P0-Cre/Floxed-EGFP and Wnt1-Cre/Floxed-EGFP. Cultured EGFP-positive cells formed neurosphere-like structures that expressed NCSC genes and could differentiate into neurons, glial cells, and myofibroblasts, but the frequency of the cell types was tissue source dependent. Interestingly, we observed NCSCs in the aorta-gonad-mesonephros region, circulating blood, and liver at the embryonic stage, suggesting that NCSCs migrate through the bloodstream to the BM and providing an explanation for how neural cells are generated from the BM. The identification of NCSCs in accessible adult tissue provides a new potential source for autologous cell therapy after nerve injury or disease.


European Journal of Neuroscience | 2005

Chondroitinase ABC combined with neural stem/progenitor cell transplantation enhances graft cell migration and outgrowth of growth-associated protein-43-positive fibers after rat spinal cord injury

Takeshi Ikegami; Masaya Nakamura; Junichi Yamane; Hiroyuki Katoh; Seiji Okada; Akio Iwanami; Kota Watanabe; Ken Ishii; Fumikazu Kato; Hiroshi Fujita; Toyomi Takahashi; Hirotaka James Okano; Yoshiaki Toyama; Hideyuki Okano

We previously reported that the transplantation of neural stem/progenitor cells (NSPCs) can contribute to the repair of injured spinal cord in adult rats and monkeys. In some cases, however, most of the transplanted cells adhered to the cavity wall and failed to migrate and integrate into the host spinal cord. In this study we focused on chondroitin sulfate proteoglycan (CSPG), a known constituent of glial scars that is strongly expressed after spinal cord injury (SCI), as a putative inhibitor of NSPC migration in vivo. We hypothesized that the digestion of CSPG by chondroitinase ABC (C‐ABC) might promote the migration of transplanted cells and neurite outgrowth after SCI. An in vitro study revealed that the migration of NSPC‐derived cells was inhibited by CSPG and that this inhibitory effect was attenuated by C‐ABC pre‐treatment. Consistently, an in vivo study of C‐ABC treatment combined with NSPC transplantation into injured spinal cord revealed that C‐ABC pre‐treatment promoted the migration of the transplanted cells, whereas CSPG‐immunopositive scar tissue around the lesion cavity prevented their migration into the host spinal cord in the absence of C‐ABC pre‐treatment. Furthermore, this combined treatment significantly induced the outgrowth of a greater number of growth‐associated protein‐43‐positive fibers at the lesion epicentre, compared with NSPC transplantation alone. These findings suggested that the application of C‐ABC enhanced the benefits of NSPC transplantation for SCI by reducing the inhibitory effects of the glial scar, indicating that this combined treatment may be a promising strategy for the regeneration of injured spinal cord.


Journal of Neuroscience Research | 2005

Establishment of graded spinal cord injury model in a nonhuman primate: The common marmoset

Akio Iwanami; Junichi Yamane; Hiroyuki Katoh; Masaya Nakamura; Suketaka Momoshima; Hajime Ishii; Yoshikuni Tanioka; Norikazu Tamaoki; Tatsuji Nomura; Yoshiaki Toyama; Hideyuki Okano

Most previous studies on spinal cord injury (SCI) have used rodent models. Direct extrapolation of the results obtained in rodents to clinical cases is difficult, however, because of neurofunctional and anatomic differences between rodents and primates. In the present study, the development of histopathologic changes and functional deficits were assessed quantitatively after mild, moderate, and severe spinal cord contusive injuries in common marmosets. Contusive SCI was induced by dropping one of three different weights (15, 17, or 20 g) at the C5 level from a height of 50 mm. Serial magnetic resonance images showed significant differences in the intramedullary T1 low signal and T2 high signal areas among the three groups. Quantitative histologic analyses revealed that the number of motor neurons, the myelinated areas, and the amounts of corticospinal tract fibers decreased significantly as the injury increased in severity. Motor functions were evaluated using the following tests: original behavioral scoring scale, measurements of spontaneous motor activity, bar grip test, and cage‐climbing test. Significant differences in all test results were observed among the three groups. Spontaneous motor activities at 10 weeks after injury were closely correlated with the residual myelinated area at the lesion epicenter. The establishment of a reliable nonhuman primate model for SCI with objective functional evaluation methods should become an essential tool for future SCI treatment studies. Quantitative behavioral and histopathologic analyses enabled three distinct grades of injury severity (15‐g, 17‐g, and 20‐g groups) to be characterized with heavier weights producing more serious injuries, and relatively constant behavioral and histopathologic outcomes.


PLOS ONE | 2009

Roles of ES Cell-Derived Gliogenic Neural Stem/ Progenitor Cells in Functional Recovery after Spinal Cord Injury

Gentaro Kumagai; Yohei Okada; Junichi Yamane; Narihito Nagoshi; Kazuya Kitamura; Masahiko Mukaino; Osahiko Tsuji; Kanehiro Fujiyoshi; Hiroyuki Katoh; Seiji Okada; Shinsuke Shibata; Yumi Matsuzaki; Satoshi Toh; Yoshiaki Toyama; Masaya Nakamura; Hideyuki Okano

Transplantation of neural stem/progenitor cells (NS/PCs) following the sub-acute phase of spinal cord injury (SCI) has been shown to promote functional recovery in rodent models. However, the types of cells most effective for treating SCI have not been clarified. Taking advantage of our recently established neurosphere-based culture system of ES cell-derived NS/PCs, in which primary neurospheres (PNS) and passaged secondary neurospheres (SNS) exhibit neurogenic and gliogenic potentials, respectively, here we examined the distinct effects of transplanting neurogenic and gliogenic NS/PCs on the functional recovery of a mouse model of SCI. ES cell-derived PNS and SNS transplanted 9 days after contusive injury at the Th10 level exhibited neurogenic and gliogenic differentiation tendencies, respectively, similar to those seen in vitro. Interestingly, transplantation of the gliogenic SNS, but not the neurogenic PNS, promoted axonal growth, remyelination, and angiogenesis, and resulted in significant locomotor functional recovery after SCI. These findings suggest that gliogenic NS/PCs are effective for promoting the recovery from SCI, and provide essential insight into the mechanisms through which cellular transplantation leads to functional improvement after SCI.


The Journal of Neuroscience | 2007

In Vivo Tracing of Neural Tracts in the Intact and Injured Spinal Cord of Marmosets by Diffusion Tensor Tractography

Kanehiro Fujiyoshi; Masayuki Yamada; Masaya Nakamura; Junichi Yamane; Hiroyuki Katoh; Kazuya Kitamura; Kenji Kawai; Seiji Okada; Suketaka Momoshima; Yoshiaki Toyama; Hideyuki Okano

In spinal cord injury, axonal disruption results in motor and sensory function impairment. The evaluation of axonal fibers is essential to assess the severity of injury and efficacy of any treatment protocol, but conventional methods such as tracer injection in brain parenchyma are highly invasive and require histological evaluation, precluding clinical applications. Previous advances in magnetic resonance imaging technology have led to the development of diffusion tensor tractography (DTT) as a potential modality to perform in vivo tracing of axonal fibers. The properties and clinical applications of DTT in the brain have been reported, but technical difficulties have limited DTT studies of the spinal cord. In this study, we report the effective use of DTT to visualize both intact and surgically disrupted spinal long tracts in adult common marmosets. To verify the feasibility of spinal cord DTT, we first performed DTT of postmortem marmosets. DTT clearly illustrated spinal projections such as the corticospinal tract and afferent fibers in control animals, and depicted the severed long tracts in the injured animals. Histology of the spinal cords in both control and injured groups were consistent with DTT findings, verifying the accuracy of DTT. We also conducted DTT in live marmosets and demonstrated that DTT can be performed in live animals to reveal in vivo nerve fiber tracing images, providing an essential tool to evaluate axonal conditions in the injured spinal cord. Taken together, these findings demonstrate the feasibility of applying DTT to preclinical and clinical studies of spinal cord injury.


Experimental Neurology | 2010

Anti-IL-6-receptor antibody promotes repair of spinal cord injury by inducing microglia-dominant inflammation

Masahiko Mukaino; Masaya Nakamura; Osamu Yamada; Seiji Okada; Satoru Morikawa; Francois Renault-Mihara; Akio Iwanami; Takeshi Ikegami; Yoshiyuki Ohsugi; Osahiko Tsuji; Hiroyuki Katoh; Yumi Matsuzaki; Yoshiaki Toyama; Meigen Liu; Hideyuki Okano

We previously reported the beneficial effect of administering an anti-mouse IL-6 receptor antibody (MR16-1) immediately after spinal cord injury (SCI). The purpose of our present study was to clarify the mechanism underlying how MR16-1 improves motor function after SCI. Quantitative analyses of inflammatory cells using flow cytometry, and immunohistochemistry with bone marrow-chimeric mice generated by transplanting genetically marked purified hematopoietic stem cells, revealed that MR16-1 dramatically switched the central player in the post-traumatic inflammation, from hematogenous macrophages to resident microglia. This change was accompanied by alterations in the expression of relevant cytokines within the injured spinal cord; the expression of recruiting chemokines including CCL2, CCL5, and CXCL10 was decreased, while that of Granulocyte/Macrophage-Colony Stimulating Factor (GM-CSF), a known mitogen for microglia, was increased. We also showed that the resident microglia expressed higher levels of phagocytic markers than the hematogenous macrophages. Consistent with these findings, we observed significantly decreased tissue damage and reduced levels of myelin debris and Nogo-A, the axonal growth inhibitor, by MR16-1 treatment. Moreover, we observed increased axonal regeneration and/or sprouting in the MR16-1-treated mice. Our findings indicate that the functional improvement elicited by MR16-1 involves microglial functions, and provide new insights into the role of IL-6 signaling in the pathology of SCI.


Journal of Neuroscience Research | 2010

Transplantation of Galectin-1-Expressing Human Neural Stem Cells Into the Injured Spinal Cord of Adult Common Marmosets

Junichi Yamane; Masaya Nakamura; Akio Iwanami; Masanori Sakaguchi; Hiroyuki Katoh; Masayuki Yamada; Suketaka Momoshima; Sachiyo Miyao; Ken Ishii; Norikazu Tamaoki; Tatsuji Nomura; Hirotaka James Okano; Yonehiro Kanemura; Yoshiaki Toyama; Hideyuki Okano

Delayed transplantation of neural stem/progenitor cells (NS/PCs) into the injured spinal cord can promote functional recovery in adult rats and monkeys. To enhance the functional recovery after NS/PC transplantation, we focused on galectin‐1, a carbohydrate‐binding protein with pleiotropic roles in cell growth, differentiation, apoptosis, and neurite outgrowth. Here, to determine the combined therapeutic effect of NS/PC transplantation and galectin‐1 on spinal cord injury (SCI), human NS/PCs were transfected by lentivirus with galectin‐1 and green fluorescent protein (GFP), (Gal‐NS/PCs) or GFP alone (GFP‐NS/PCs), expanded in vitro, and then transplanted into the spinal cord of adult common marmosets, 9 days after contusive cervical SCI. The animals motor function was evaluated by their spontaneous motor activity, bar grip power, and performance on a treadmill test. Histological analyses revealed that the grafted human NS/PCs survived and differentiated into neurons, astrocytes, and oligodendrocytes. There were significant differences in the myelinated area, corticospinal fibers, and serotonergic fibers among the Gal‐NS/PC, GFP‐NS/PC, vehicle‐control, and sham‐operated groups. The Gal‐NS/PC‐grafted animals showed a better performance on all the behavioral tests compared with the other groups. These findings suggest that Gal‐NS/PCs have better therapeutic potential than NS/PCs for SCI in nonhuman primates and that human Gal‐NS/PC transplantation might be a feasible treatment for human SCI.


Molecular Brain | 2011

The dual origin of the peripheral olfactory system: placode and neural crest

Hiroyuki Katoh; Shinsuke Shibata; Kimiko Fukuda; Momoka Sato; Etsuko Satoh; Narihito Nagoshi; Takeo Minematsu; Yumi Matsuzaki; Chihiro Akazawa; Yoshiaki Toyama; Masaya Nakamura; Hideyuki Okano

BackgroundThe olfactory epithelium (OE) has a unique capacity for continuous neurogenesis, extending axons to the olfactory bulb with the assistance of olfactory ensheathing cells (OECs). The OE and OECs have been believed to develop solely from the olfactory placode, while the neural crest (NC) cells have been believed to contribute only the underlying structural elements of the olfactory system. In order to further elucidate the role of NC cells in olfactory development, we examined the olfactory system in the transgenic mice Wnt1-Cre/Floxed-EGFP and P0-Cre/Floxed-EGFP, in which migrating NC cells and its descendents permanently express GFP, and conducted transposon-mediated cell lineage tracing studies in chick embryos.ResultsExamination of these transgenic mice revealed GFP-positive cells in the OE, demonstrating that NC-derived cells give rise to OE cells with morphologic and antigenic properties identical to placode-derived cells. OECs were also positive for GFP, confirming their NC origin. Cell lineage tracing studies performed in chick embryos confirmed the migration of NC cells into the OE. Furthermore, spheres cultured from the dissociated cells of the olfactory mucosa demonstrated self-renewal and trilineage differentiation capacities (neurons, glial cells, and myofibroblasts), demonstrating the presence of NC progenitors in the olfactory mucosa.ConclusionOur data demonstrates that the NC plays a larger role in the development of the olfactory system than previously believed, and suggests that NC-derived cells may in part be responsible for the remarkable capacity of the OE for neurogenesis and regeneration.

Collaboration


Dive into the Hiroyuki Katoh's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge