Hiroyuki Mitsudo
Kyushu University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Hiroyuki Mitsudo.
Vision Research | 2005
Hiroyuki Mitsudo; Sachio Nakamizo; Hiroshi Ono
A visual search task was used to investigate the spatially parallel coding of depth from binocular disparity and from binocularly unmatched features. Experiment 1, using disparity noise, showed that detectability is higher for illusory phantom targets defined by unmatched features than for disparity-defined targets, although the two targets were equated as to theoretically minimum depth. Experiment 2, using binocularly unmatched noise whose width was equal to the disparity of the noise used in Experiment 1, showed that noise severely interferes with the detection of both the disparity and the phantom targets. These results are consistent with the idea that the greater depth seen with phantom stereopsis is coded at the early stages of visual processing.
Perception | 2003
Hiroyuki Mitsudo
Phenomenal transparency reflects a process which makes it possible to recover the structure and lightness of overlapping objects from a fragmented image. This process was investigated by the visual-search paradigm. In three experiments, observers searched for a target that consisted of gray patches among a variable number of distractors and the search efficiency was assessed. Experiments 1 and 2 showed that the search efficiency was greatly improved when the target was distinctive with regard to structure, based on transparency. Experiment 3 showed that the search efficiency was impaired when a target was not distinctive with regard to lightness (ie perceived reflectance), based on transparency. These results suggest that the shape and reflectance of overlapping objects when accompanied by transparency can be calculated in parallel across the visual field, and can be used as a guide for visual attention.
Vision Research | 2007
Hiroyuki Mitsudo
This study reports a new depth illusion in which a static flat pattern appears stratified stereoscopically when viewed binocularly with an elevated gaze. Three psychophysical experiments measured perceived relative depth and fixational cyclodisparity (a rotation of one eyes view relative to the other eyes view about the line of sight) when flat patterns drawn with solid or dashed curved lines were fixated at various levels of gaze elevation. Experiments 1 and 2 showed that the patterns drawn with solid lines produced illusory depth only at large gaze elevations (downward and upward). Experiment 3 showed that the magnitude of the illusory depth was correlated with that of fixational cyclodisparity. These results suggest that the illusory depth originates in the binocular torsional misalignment generated by gaze elevation.
Perception | 2007
Hiroyuki Mitsudo; Hiroshi Ono
Two psychophysical experiments were conducted to investigate the mechanism that generates stable depth structure from retinal motion combined with extraretinal signals from pursuit eye movements. Stimuli consisted of random dots that moved horizontally in one direction (ie stimuli had common motion on the retina), but at different speeds between adjacent rows. The stimuli were presented with different speeds of pursuit eye movements whose direction was opposite to that of the common retinal motion. Experiment 1 showed that the rows moving faster on the retina appeared closer when viewed without eye movements; however, they appeared farther when pursuit speed exceeded the speed of common retinal motion. The ‘transition’ speed of the pursuit eye movement was slightly, but consistently, larger than the speed of common retinal motion. Experiment 2 showed that parallax thresholds for perceiving relative motion between adjacent rows were minimum at the transition speed found in experiment 1. These results suggest that the visual system calculates head-centric velocity, by adding retinal velocity and pursuit velocity, to obtain a stable depth structure.
Vision Research | 2006
Hiroyuki Mitsudo; Sachio Nakamizo; Hiroshi Ono
An external noise technique was used to investigate the stereoscopic process that generates an illusory phantom occluder from binocularly unmatched elements. Observers were required to identify the quadrant in which a binocularly defined target was presented. We had three targets: (a) two vertical binocular bars with the unmatched portions arranged to induce a stable phantom occluder (valid), (b) the same stimuli except the image for the left eye was switched with that for the right eye therefore not inducing a stable occluder (invalid), and (c) a single binocular bar with the same unmatched portion (single-bar). For each target, the luminance contrast of the signal required for 75% correct responses was measured at four levels of external interocular noise. Contrast thresholds were found to be lower for the valid target than for both the invalid and the single-bar targets. The results suggest that the visual system has a stereoscopic detector that responds to stimuli that meet a long-distance requirement for the perception of partially occluding surfaces.
Perception | 2005
Hiroyuki Mitsudo; Sachio Nakamizo
An object phenomenally shrinks in its horizontal dimension when shown on a 2-D plane as if the central portion of the object were partially occluded by another vertical one in 3-D space (the Kanizsa amodal shrinkage). We examined the predictions of the correcting-mechanism hypothesis proposed by Ohtsuka and Ono (2002, Proceedings of SPIE 4864 167 – 174), which states that an inappropriate operation of the mechanism that corrects a phenomenal increase in monocularly visible areas accompanied by a stereoscopic occluder gives rise to the illusion. In this study we measured the perceived width (or height in experiment 3) of a square seen behind a rectangle, while controlling other factors which potentially influence the illusion, such as the division of space or depth stratification. The results of five experiments showed that (a) the perceived width was not influenced when the occluder had a relatively large binocular disparity, but was underestimated when the occluder did not have disparity, and (b) the shrinkage diminished when the foreground rectangle was transparent, was horizontally oriented, or contained no pictorial occlusion cues. These results support the hypothesis that the correcting mechanism, triggered by pictorial occlusion cues, contributes to the Kanizsa shrinkage.
Perception | 2004
Hiroyuki Mitsudo
Perceptual transparency requires local same-polarity X-junctions, which can also be generated by temporal integration under natural dynamic conditions. In this study, segmentation performance and target appearance were measured for a uniform gray target embedded in a random-dot frame presented with a temporally adjacent mask. Although static cues for both segmentation and transparency were unavailable, transparency was observed only when collinear same-polarity edges reduced backward masking, in both the fovea and the perifovea. These results suggest that the visual system has a common underlying mechanism for rapid segmentation and transparency, which utilises same-polarity X-junctions generated by temporal integration.
Perception | 2017
Shinya Harada; Hiroyuki Mitsudo
Depth contrast is a stereoscopic visual phenomenon in which the slant of an element is affected by that of adjacent elements. Normalization has been proposed to be a possible cause of depth contrast, but it is still unclear how depth contrast involves normalization. To address this issue, we devised stereograms consisting of a vertical test line accompanied by several inducer lines, like a three-dimensional variation of the well-known Müller–Lyer configuration. The inducer lines had horizontal binocular disparities that defined a stereoscopic slant about a horizontal axis with respect to the endpoints of the test line. The observer’s task was to adjust the slant of the test line about a horizontal axis until it appeared subjectively vertical. The results of two psychophysical experiments found that slant settings were affected by the slant of local inducers, but not by the overall slant of the whole stimulus. These results suggest that, at least for line patterns, the stereo system normalizes depth locally.
Perception | 2018
Shinya Harada; Hiroyuki Mitsudo
Slant contrast refers to a stereoscopic phenomenon in which the perceived slant of a test object is affected by the disparity of a surrounding inducer object. Slant contrast has been proposed to involve cue conflict, but it is unclear whether this idea is useful in explaining slant contrast at short stimulus presentations (<1 s). We measured both slant contrast and perceived inducer slant while varying the presentation duration (100–800 ms) of stereograms with several spatial configurations. In three psychophysical experiments, we found that (a) both slant contrast and perceived inducer slant increased as a function of stimulus duration, and (b) slant contrast was relatively stable across different test and inducer shapes at each short stimulus duration, whereas perceived inducer slant increased when cue conflict was reduced. These results suggest that at brief, not long stimulus presentations, the cue conflict between disparity and perspective plays a smaller role in slant contrast than other depth cues.
Journal of Vision | 2016
Kun Qian; Hiroyuki Mitsudo
In this study, we report a new visual shape illusion, the eggs illusion, in which circular disks located at the midpoints between adjacent grid intersections are perceived as being deformed to ellipses. In Experiment 1, we examined the eggs illusion by using a matching method and found that grid luminance and patch size play a critical role in producing the illusory deformation. In Experiment 2, we employed several types of elliptic or circular patches to examine the conditions in which the illusory deformation was cancelled or weakened. We observed that the illusory deformation was dependent on local grid orientation. Based on these results, we found several common features between the eggs illusion and the scintillating grid illusion. This resemblance suggests a possibility that similar mechanisms underlie the two phenomena. In addition to the scintillating grid illusion, we also considered several known perceptual phenomena that might be related to the eggs illusion, i.e., the apparent size illusion, the shape-contrast effect, and the Orbison illusion. Finally, we discuss the role of orientation processing in generating the eggs illusion.