Hiroyuki Moriguchi
University of Tokyo
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Hiroyuki Moriguchi.
Journal of Nanobiotechnology | 2004
Ikurou Suzuki; Yoshihiro Sugio; Hiroyuki Moriguchi; Yasuhiko Jimbo; Kenji Yasuda
Control over spatial distribution of individual neurons and the pattern of neural network provides an important tool for studying information processing pathways during neural network formation. Moreover, the knowledge of the direction of synaptic connections between cells in each neural network can provide detailed information on the relationship between the forward and feedback signaling. We have developed a method for topographical control of the direction of synaptic connections within a living neuronal network using a new type of individual-cell-based on-chip cell-cultivation system with an agarose microchamber array (AMCA). The advantages of this system include the possibility to control positions and number of cultured cells as well as flexible control of the direction of elongation of axons through stepwise melting of narrow grooves. Such micrometer-order microchannels are obtained by photo-thermal etching of agarose where a portion of the gel is melted with a 1064-nm infrared laser beam. Using this system, we created neural network from individual Rat hippocampal cells. We were able to control elongation of individual axons during cultivation (from cells contained within the AMCA) by non-destructive stepwise photo-thermal etching. We have demonstrated the potential of our on-chip AMCA cell cultivation system for the controlled development of individual cell-based neural networks.
Sensors and Actuators B-chemical | 2004
Yoshihiro Sugio; Kensuke Kojima; Hiroyuki Moriguchi; Kazunori Takahashi; Tomoyuki Kaneko; Kenji Yasuda
We have developed a new type of single-cell based on-chip cell-cultivation system with an agarose microchamber (AMC) array and a photo-thermal etching module for step-by-step topographical control of the network patterns of living neural cells during long-term cultivation. The advantages of this system are that (1) it can control positions and numbers of cells for cultivation by using agar-based microchambers, and (2) it can change the neural network complexity during cultivation by photo-thermal melting a portion of agar at the focal point of a 1064 nm infrared laser beam. This laser wavelength is permeable with respect to water and agarose, and it is only absorbed at the thin chromium layer on the chromium-coated glass slide surface at the bottom of the agarose layer. With adequate laser power, we can easily fabricate narrow tunnel-shaped channels between the microchambers at the bottom of the agar layer without the complicated steps conventional microfabrication processes entail even during cultivation; we demonstrated that rat hippocampal cells in two adjacent chambers formed fiber connections through new connections between chambers after these had been photo-thermally fabricated. We also verified the fiber connection between those cells by using calcium-based fluorescent microscopy. These results indicate that this system can potentially be used for studying the complexity of neural network patterns for epigenetic memorization.
BioSystems | 2012
Yuzo Takayama; Hiroyuki Moriguchi; Kiyoshi Kotani; Takafumi Suzuki; Kunihiko Mabuchi; Yasuhiko Jimbo
Regeneration of damaged central nervous systems (CNS) is an important topic in neuroscience and neuroengineering. Grafting new neurons derived from pluripotent stem cells into damaged regions can be done to restore functions after injury. Little is known, however, about network-wide interactions between stem-cell-derived neurons and CNS neurons. In this study, we developed a co-culture method of stem cell-derived neuronal networks and CNS networks and observed spontaneous activity in the co-culture samples. By using a microfabricated poly(dimethylsiloxane) device having two culture compartments and 20 connecting microconduits, we are able to compartmentalize P19-derived neurons and mouse cortical neurons and connect them via the microconduits. Furthermore, we combined the co-culture device and a microelectrode array (MEA)-based recording system and recorded spontaneous activity in the co-cultured networks. We found that periodic synchronized bursting spreading over both neuronal networks occurred during the second week in vitro and that P19-derived neurons in the co-cultured networks had different developmental processes compared with those grown in monoculture. These findings suggest that functional interactions form between P19-dervived neurons and mouse cortical neurons and that the co-culture method is useful for exploring the network-wide integrations between stem cell-derived neurons and CNS neurons.
Langmuir | 2013
Hirotada Hirama; Taisuke Kambe; Kyouhei Aketagawa; Taku Ota; Hiroyuki Moriguchi; Toru Torii
We report a simple method for forming monodispersed, uniformly shaped gel microbeads with precisely controlled sizes. The basis of our method is the placement of monodispersed sodium alginate droplets, formed by a microfluidic device, on an agarose slab gel containing a high-osmotic-pressure gelation agent (CaCl(2) aq.): (1) the droplets are cross-linked (gelated) due to the diffusion of the gelation agent from the agarose slab gel to the sodium alginate droplets and (2) the droplets simultaneously shrink to a fraction of their original size (<100 μm in diameter) due to the diffusion of water molecules from the sodium alginate droplets to the agarose slab gel. We verified the mass transfer mechanism between the droplet and the agarose slab gel. This method circumvents the limitations of gel microbead formation, such as the need to prepare microchannels of various sizes, microchannel clogging, and the deformation of the produced gel microbeads.
Biomedical Microdevices | 2012
Hirotada Hirama; Takahiro Odera; Toru Torii; Hiroyuki Moriguchi
We present a lithography-free procedure for fabricating intrinsically three-dimensional smooth-walled microchannels within poly(dimethylsiloxane) (PDMS) elastomer using hydrogel molds. In the fabrication process, small pieces of agarose gel (“wires” or “chips”) are embedded in uncured PDMS composite, arranged in the shape of the desired microchannels, and used as molds to form the microchannels. The point of the process is that molds for creating junctions of microchannels such as T-junctions or cross-junctions can be robustly formed by simply grafting gel wires in uncured PDMS composite without using adhesive agents. The technical advantage of this method is that three-dimensional microstructures such as microchannels with circular cross sections, three-dimensionally arranged junctions or interchanges of microchannels can be flexibly designed and fabricated with a straightforward procedure without the need for any specialized equipment or layer-by-layer assemblage processes. This method provides a low-cost, green procedure for fabricating microfluidic devices and promises to make microfluidic processes more accessible and easy to implement in a variety of scientific fields.
RSC Advances | 2016
Nobuyuki Tanaka; Hiroyuki Moriguchi; Asako Sato; Takayuki Kawai; Kenta Shimba; Yasuhiko Jimbo; Yo Tanaka
Hydrogel patterning methods are widely used for cell patterning because they offer better long-term stability than protein patterning methods such as micro-contact printing, but conventional hydrogel patterning methods require special apparatuses such as a laser or an electron beam lithography system or they have complicated chemical operations which prevent their practical use in biological laboratories. A simple method was developed to cast a hydrogel solution without external power sources using a polydimethylsiloxane (PDMS) mold with micro-channels. This study employed “the accumulation of vacuum pressure” in a degassed lump of PDMS as a driving force for introducing agarose solution into the micro-channels. Sufficient vacuum pressure could be accumulated within 1 h in the PDMS elastomer that was acting as a vacuum tank, and 2 w/v% agarose solution could be aspirated into the micro-channels with widths from 100 to 2000 μm and a height of 19 μm, fully filling them. After the gelation and dehydration of agarose solution in the micro-channels, the patterns of agarose gel on the channels were successfully cast with a 90%-width accuracy. By using the repellency of agarose gel toward cell adhesion, patterned cultures of myoblasts and cortical neurons were successfully prepared. This technique is expected to be useful in repellency-guided cell patterning for various types of cells, with applications to cell–cell interactions and axon guidance.
Japanese Journal of Applied Physics | 2006
Hiroyuki Moriguchi; Kenji Yasuda
We have developed a new three-dimensional (3D) microfabrication method for agarose gel, photothermal microneedle etching (PTMNE), by means of an improved photothermal spot heating using a focused 1064 nm laser beam for melting a portion of the agarose layer at the tip of the microneedle, where a photoabsorbent chromium layer is coated to be heated. The advantage of this method is that it allows the 3D control of the melting topography within the thick agarose layer with a 2 µm resolution, whereas conventional photothermal etching can enable only two-dimensional (2D) control on the surface of the chip. By this method, we can form the spheroid clusters of particular cells from isolated single cells without any physical contact with other cells in other chambers, which is important for measuring the community effect of the cell group from isolated single cells. When we set single cancer cells in microchambers of 100 µm in diameter, formed in a 50-µm-thick agarose layer, we observed that they grew, divided, and formed spheroid clusters of cells in each microchamber. The result indicates the potential of this method to be a fundamental technique in the research of multicellular spherical clusters of cells for checking the community effect of cells in 3D structures, such as the permeabilities of chemicals and substrates into the cluster, which is complementary to conventional 2D dish cultivation and can contribute to the cell-based screening of drugs.
IEEE Transactions on Biomedical Engineering | 2014
Atsushi Saito; Yuzo Takayama; Hiroyuki Moriguchi; Kiyoshi Kotani; Yasuhiko Jimbo
Magnetic stimulation noninvasively modulates neuronal activity through a magnetically induced current. However, despite the usefulness and popularity of this method, the effects of neuronal activity in the nonstimulated regions on the stimulus responses are unknown. Here, we report that the induced current-evoked responses were affected by neuronal activities in the nonstimulated regions. Our experiment used a Mu-metal-based localized induced current stimulation (LICS) system combined with the microfabricated cell culture chamber system and a microelectrode array (MEA). The cell culture chamber system has radiating microtunnels connecting one central and eight outer chambers, which were fabricated using soft lithography and a replica modeling technique with SU-8 photoresist and polydimethylsiloxane (PDMS). Rat cortical neurons were separately cultured in the chambers and formed functional synaptic connections through the microtunnels. By applying a biphasic alternating pulsed magnetic field to the Mu-metal located in the central chamber, induced currents were mainly generated near the cultured neurons and modified the neuronal activities, which were recorded through MEA. Furthermore, we confirmed that the evoked responses were modified by localized pharmacological stimulation (LPS) in the outer chambers. These results suggest that our system would be promising tool for analyzing the effect of magnetic stimulation on interacting neuronal activity.
international conference of the ieee engineering in medicine and biology society | 2011
Akimasa Takeuchi; Masahide Mori; Kana Kitagawa; Kenta Shimba; Yuzo Takayama; Hiroyuki Moriguchi; Keiko Miwa; Kiyoshi Kotani; Jong-Kook Lee; Makoto Noshiro; Yasuhiko Jimbo
Rat superior cervical ganglia (SCG), which are sympathetic ganglia, neurons and ventricular myocytes (VMs) were co-cultured separately in a minichamber placed on a microelectrode-array (MEA) substrate. The minichamber was fabricated photolithographically and had 2 compartments, 16 microcompartments and 8 microconduits. The SCG neurons were seeded into one of the compartments and all of the microcompartments using a glass pipette controlled by a micromanipulator and a microinjector. The VMs were seeded into the other compartment. Three days after seeding of the VMs, the neurites of the SCG neurons had connected with the VMs via the microconduits. Electrical stimulations, trains of biphasic square pulses, were applied to the SCG neurons in the microcompartments using 16 electrodes. Evoked responses were observed in several electrodes while electrical stimulation was applied to the SCG neurons. According to the two-way analysis of variance (ANOVA), the beat rate after electrical stimulation was affected by the frequency and the number of the stimulation pulses. These results suggest that pulse number and the frequency of the electrical stimulation contribute to modulation of the beat rate of the cardiomyocytes.
Journal of Bioscience and Bioengineering | 2011
Yuzo Takayama; Atsushi Saito; Hiroyuki Moriguchi; Kiyoshi Kotani; Takafumi Suzuki; Kunihiko Mabuchi; Yasuhiko Jimbo
Precise control of differentiation processes of pluripotent stem cells is a key component for the further development of regenerative medicine. For this purpose, combining a cell-aggregate-size treatment for regulating intercellular signal transmissions and an electrical stimulation technique for inducing cellular responses is a promising approach. In the present study, we developed microfabricated electrode substrates that allow simultaneous stimulation of embryoid bodies (EBs) of P19 cells. Mouse embryonal carcinoma P19 cells can be induced to differentiate into three germ layers and serve as a promising stem cell model. Microcavity-array patterns were fabricated onto indium-tin-oxide (ITO) substrates using a standard photo-lithography technique, and uniform-sized EBs of P19 cells were inserted into each microcavity. Electrical stimulation was applied to the EBs through substrate electrodes and stimulus-induced intracellular calcium transients were monitored. We confirmed that the developed electrode device could simultaneously stimulate smaller (200μm diameter) and larger (500μm diameter) EBs inserted in the microcavities and induce specific spatio-temporal patterns of intracellular calcium transients in the EBs with fine reproducibility. We concluded that the developed microcavity array with embedded electrodes could simultaneously and effectively stimulate uniform-sized EBs inserted in it. Therefore, it is a promising experimental tool for precisely controlling cell differentiation processes.