Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Hiroyuki Sasanuma is active.

Publication


Featured researches published by Hiroyuki Sasanuma.


Genes & Development | 2008

Cdc7-dependent phosphorylation of Mer2 facilitates initiation of yeast meiotic recombination

Hiroyuki Sasanuma; Kouji Hirota; Tomoyuki Fukuda; Naoko Kakusho; Kazuto Kugou; Yasuo Kawasaki; Takehiko Shibata; Hisao Masai; Kunihiro Ohta

Meiosis ensures genetic diversification of gametes and sexual reproduction. For successful meiosis, multiple events such as DNA replication, recombination, and chromosome segregation must occur coordinately in a strict regulated order. We investigated the meiotic roles of Cdc7 kinase in the initiation of meiotic recombination, namely, DNA double-strand breaks (DSBs) mediated by Spo11 and other coactivating proteins. Genetic analysis using bob1-1 cdc7Delta reveals that Cdc7 is essential for meiotic DSBs and meiosis I progression. We also demonstrate that the N-terminal region of Mer2, a Spo11 ancillary protein required for DSB formation and phosphorylated by cyclin-dependent kinase (CDK), contains two types of Cdc7-dependent phosphorylation sites near the CDK site (Ser30): One (Ser29) is essential for meiotic DSB formation, and the others exhibit a cumulative effect to facilitate DSB formation. Importantly, mutations on these sites confer severe defects in DSB formation even when the CDK phosphorylation is present at Ser30. Diploids of cdc7Delta display defects in the chromatin binding of not only Spo11 but also Rec114 and Mei4, other meiotic coactivators that may assist Spo11 binding to DSB hot spots. We thus propose that Cdc7, in concert with CDK, regulates Spo11 loading to DSB sites via Mer2 phosphorylation.


Nature Communications | 2013

A new protein complex promoting the assembly of Rad51 filaments

Hiroyuki Sasanuma; Maki S. Tawaramoto; Jessica P. Lao; Harumi Hosaka; Eri Sanda; Mamoru Suzuki; Eiki Yamashita; Neil Hunter; Miki Shinohara; Atsushi Nakagawa; Akira Shinohara

During homologous recombination, eukaryotic RecA homologue Rad51 assembles into a nucleoprotein filament on single-stranded DNA to catalyse homologous pairing and DNA-strand exchange with a homologous template. Rad51 nucleoprotein filaments are highly dynamic and regulated via the coordinated actions of various accessory proteins including Rad51 mediators. Here, we identify a new Rad51 mediator complex. The PCSS complex, comprising budding yeast Psy3, Csm2, Shu1 and Shu2 proteins, binds to recombination sites and is required for Rad51 assembly and function during meiosis. Within the hetero-tetramer, Psy3-Csm2 constitutes a core sub-complex with DNA-binding activity. In vitro, purified Psy3-Csm2 stabilizes the Rad51-single-stranded DNA complex independently of nucleotide cofactor. The mechanism of Rad51 stabilization is inferred by our high-resolution crystal structure, which reveals Psy3-Csm2 to be a structural mimic of the Rad51-dimer, a fundamental unit of the Rad51-filament. Together, these results reveal a novel molecular mechanism for this class of Rad51-mediators, which includes the human Rad51 paralogues.


Genes to Cells | 2003

Budding yeast mcm10/dna43 mutant requires a novel repair pathway for viability.

Yoshio Araki; Yasuo Kawasaki; Hiroyuki Sasanuma; Bik Kwoon Tye; Akio Sugino

Background: MCM10 is essential for the initiation of chromosomal DNA replication in Saccharomyces cerevisiae. Mcm10p functionally interacts with components of the pre‐replicative complex (Mcm2‐Mcm7 complex and origin recognition complex) as well as the pre‐initiation complex component (Cdc45p) suggesting that it may be a component of the pre‐RC as well as the pre‐IC. Two‐dimensional gel electrophoresis analysis showed that Mcm10p is required not only for the initiation of DNA synthesis at replication origins but also for the smooth passage of replication forks at origins. Genetic analysis showed that MCM10 interacts with components of the elongation machinery such as Polδ and Polɛ, suggesting that it may play a role in elongation replication.


Nucleic Acids Research | 2015

Smarcal1 promotes double-strand-break repair by nonhomologous end-joining

Islam Shamima Keka; Yuko Maede; Maminur Rahman; Tetsushi Sakuma; Masamitsu Honma; Takashi Yamamoto; Shunichi Takeda; Hiroyuki Sasanuma

Smarcal1 is a SWI/SNF-family protein with an ATPase domain involved in DNA-annealing activities and a binding site for the RPA single-strand-DNA-binding protein. Although the role played by Smarcal1 in the maintenance of replication forks has been established, it remains unknown whether Smarcal1 contributes to genomic DNA maintenance outside of the S phase. We disrupted the SMARCAL1 gene in both the chicken DT40 and the human TK6 B cell lines. The resulting SMARCAL1−/− clones exhibited sensitivity to chemotherapeutic topoisomerase 2 inhibitors, just as nonhomologous end-joining (NHEJ) null-deficient cells do. SMARCAL1−/− cells also exhibited an increase in radiosensitivity in the G1 phase. Moreover, the loss of Smarcal1 in NHEJ null-deficient cells does not further increase their radiosensitivity. These results demonstrate that Smarcal1 is required for efficient NHEJ-mediated DSB repair. Both inactivation of the ATPase domain and deletion of the RPA-binding site cause the same phenotype as does null-mutation of Smarcal1, suggesting that Smarcal1 enhances NHEJ, presumably by interacting with RPA at unwound single-strand sequences and then facilitating annealing at DSB ends. SMARCAL1−/−cells showed a poor accumulation of Ku70/DNA-PKcs and XRCC4 at DNA-damage sites. We propose that Smarcal1 maintains the duplex status of DSBs to ensure proper recruitment of NHEJ factors to DSB sites.


Genes to Cells | 2015

Relative contribution of four nucleases, CtIP, Dna2, Exo1 and Mre11, to the initial step of DNA double‐strand break repair by homologous recombination in both the chicken DT40 and human TK6 cell lines

Nguyen Ngoc Hoa; Remi Akagawa; Tomomi Yamasaki; Kouji Hirota; Kentaro Sasa; Toyoaki Natsume; Junya Kobayashi; Tetsushi Sakuma; Takashi Yamamoto; Kenshi Komatsu; Masato T. Kanemaki; Yves Pommier; Shunichi Takeda; Hiroyuki Sasanuma

Homologous recombination (HR) is initiated by double‐strand break (DSB) resection, during which DSBs are processed by nucleases to generate 3′ single‐strand DNA. DSB resection is initiated by CtIP and Mre11 followed by long‐range resection by Dna2 and Exo1 in Saccharomyces cerevisiae. To analyze the relative contribution of four nucleases, CtIP, Mre11, Dna2 and Exo1, to DSB resection, we disrupted genes encoding these nucleases in chicken DT40 cells. CtIP and Dna2 are required for DSB resection, whereas Exo1 is dispensable even in the absence of Dna2, which observation agrees with no developmental defect in Exo1‐deficient mice. Despite the critical role of Mre11 in DSB resection in S. cerevisiae, loss of Mre11 only modestly impairs DSB resection in DT40 cells. To further test the role of CtIP and Mre11 in other species, we conditionally disrupted CtIP and MRE11 genes in the human TK6 B cell line. As with DT40 cells, CtIP contributes to DSB resection considerably more significantly than Mre11 in TK6 cells. Considering the critical role of Mre11 in HR, this study suggests that Mre11 is involved in a mechanism other than DSB resection. In summary, CtIP and Dna2 are sufficient for DSB resection to ensure efficient DSB repair by HR.


Genetics | 2013

Remodeling of the Rad51 DNA Strand-Exchange Protein by the Srs2 Helicase

Hiroyuki Sasanuma; Yuko Furihata; Miki Shinohara; Akira Shinohara

Homologous recombination is associated with the dynamic assembly and disassembly of DNA–protein complexes. Assembly of a nucleoprotein filament comprising ssDNA and the RecA homolog, Rad51, is a key step required for homology search during recombination. The budding yeast Srs2 DNA translocase is known to dismantle Rad51 filament in vitro. However, there is limited evidence to support the dismantling activity of Srs2 in vivo. Here, we show that Srs2 indeed disrupts Rad51-containing complexes from chromosomes during meiosis. Overexpression of Srs2 during the meiotic prophase impairs meiotic recombination and removes Rad51 from meiotic chromosomes. This dismantling activity is specific for Rad51, as Srs2 Overexpression does not remove Dmc1 (a meiosis-specific Rad51 homolog), Rad52 (a Rad51 mediator), or replication protein A (RPA; a single-stranded DNA-binding protein). Rather, RPA replaces Rad51 under these conditions. A mutant Srs2 lacking helicase activity cannot remove Rad51 from meiotic chromosomes. Interestingly, the Rad51-binding domain of Srs2, which is critical for Rad51-dismantling activity in vitro, is not essential for this activity in vivo. Our results suggest that a precise level of Srs2, in the form of the Srs2 translocase, is required to appropriately regulate the Rad51 nucleoprotein filament dynamics during meiosis.


Science Advances | 2015

Abacavir, an anti-HIV-1 drug, targets TDP1-deficient adult T cell leukemia.

Kohei Tada; Masayuki Kobayashi; Yoko Takiuchi; Fumie Iwai; Takashi Sakamoto; Kayoko Nagata; Masanobu Shinohara; Katsuhiro Io; Kotaro Shirakawa; Masakatsu Hishizawa; Keisuke Shindo; Norimitsu Kadowaki; Kouji Hirota; Junpei Yamamoto; Shigenori Iwai; Hiroyuki Sasanuma; Shunichi Takeda; Akifumi Takaori-Kondo

An anti–HIV-1 drug is found to destroy leukemia cells in adults. Adult T cell leukemia (ATL) is an aggressive T cell malignancy caused by human T cell leukemia virus type 1 (HTLV-1) and has a poor prognosis. We analyzed the cytotoxic effects of various nucleoside analog reverse transcriptase inhibitors (NRTIs) for HIV-1 on ATL cells and found that abacavir potently and selectively kills ATL cells. Although NRTIs have minimal genotoxicities on host cells, the therapeutic concentration of abacavir induced numerous DNA double-strand breaks (DSBs) in the chromosomal DNA of ATL cells. DSBs persisted over time in ATL cells but not in other cell lines, suggesting impaired DNA repair. We found that the reduced expression of tyrosyl-DNA phosphodiesterase 1 (TDP1), a repair enzyme, is attributable to the cytotoxic effect of abacavir on ATL cells. We also showed that TDP1 removes abacavir from DNA ends in vitro. These results suggest a model in which ATL cells with reduced TDP1 expression are unable to excise abacavir incorporated into genomic DNA, leading to irreparable DSBs. On the basis of the above mechanism, we propose abacavir as a promising chemotherapeutic agent for ATL.


ACS Chemical Biology | 2016

Deazaflavin Inhibitors of Tyrosyl-DNA Phosphodiesterase 2 (TDP2) Specific for the Human Enzyme and Active against Cellular TDP2

Christophe Marchand; Monica Abdelmalak; Jayakanth Kankanala; Shar Yin Huang; Evgeny Kiselev; Katherine Fesen; Kayo Kurahashi; Hiroyuki Sasanuma; Shunichi Takeda; Hideki Aihara; Zhengqiang Wang; Yves Pommier

Tyrosyl-DNA phosphodiesterase 2 repairs irreversible topoisomerase II-mediated cleavage complexes generated by anticancer topoisomerase-targeted drugs and processes replication intermediates for picornaviruses (VPg unlinkase) and hepatitis B virus. There is currently no TDP2 inhibitor in clinical development. Here, we report a series of deazaflavin derivatives that selectively inhibit the human TDP2 enzyme in a competitive manner both with recombinant and native TDP2. We show that mouse, fish, and C. elegans TDP2 enzymes are highly resistant to the drugs and that key protein residues are responsible for drug resistance. Among them, human residues L313 and T296 confer high resistance when mutated to their mouse counterparts. Moreover, deazaflavin derivatives show potent synergy in combination with the topoisomerase II inhibitor etoposide in human prostate cancer DU145 cells and TDP2-dependent synergy in TK6 human lymphoblast and avian DT40 cells. Deazaflavin derivatives represent the first suitable platform for the development of potent and selective TDP2 inhibitors.


PLOS ONE | 2015

BRCA1 and CtIP Are Both Required to Recruit Dna2 at Double-Strand Breaks in Homologous Recombination

Nguyen Ngoc Hoa; Junya Kobayashi; Masato Omura; Mayumi Hirakawa; Soo Hyun Yang; Kenshi Komatsu; Tanya T. Paull; Shunichi Takeda; Hiroyuki Sasanuma

Homologous recombination plays a key role in the repair of double-strand breaks (DSBs), and thereby significantly contributes to cellular tolerance to radiotherapy and some chemotherapy. DSB repair by homologous recombination is initiated by 5’ to 3’ strand resection (DSB resection), with nucleases generating the 3’ single-strand DNA (3’ssDNA) at DSB sites. Genetic studies of Saccharomyces cerevisiae demonstrate a two-step DSB resection, wherein CtIP and Mre11 nucleases carry out short-range DSB resection followed by long-range DSB resection done by Dna2 and Exo1 nucleases. Recent studies indicate that CtIP contributes to DSB resection through its non-catalytic role but not as a nuclease. However, it remains elusive how CtIP contributes to DSB resection. To explore the non-catalytic role, we examined the dynamics of Dna2 by developing an immuno-cytochemical method to detect ionizing-radiation (IR)-induced Dna2-subnuclear-focus formation at DSB sites in chicken DT40 and human cell lines. Ionizing-radiation induced Dna2 foci only in wild-type cells, but not in Dna2 depleted cells, with the number of foci reaching its maximum at 30 minutes and being hardly detectable at 120 minutes after IR. Induced foci were detectable in cells in the G2 phase but not in the G1 phase. These observations suggest that Dna2 foci represent the recruitment of Dna2 to DSB sites for DSB resection. Importantly, the depletion of CtIP inhibited the recruitment of Dna2 to DSB sites in both human cells and chicken DT40 cells. Likewise, a defect in breast cancer 1 (BRCA1), which physically interacts with CtIP and contributes to DSB resection, also inhibited the recruitment of Dna2. Moreover, CtIP physically associates with Dna2, and the association is enhanced by IR. We conclude that BRCA1 and CtIP contribute to DSB resection by recruiting Dna2 to damage sites, thus ensuring the robust DSB resection necessary for efficient homologous recombination.


PLOS ONE | 2013

Interference in DNA Replication Can Cause Mitotic Chromosomal Breakage Unassociated with Double-Strand Breaks

Mari Fujita; Hiroyuki Sasanuma; Kimiyo N. Yamamoto; Hiroshi Harada; Aya Kurosawa; Noritaka Adachi; Masato Omura; Masahiro Hiraoka; Shunichi Takeda; Kouji Hirota

Morphological analysis of mitotic chromosomes is used to detect mutagenic chemical compounds and to estimate the dose of ionizing radiation to be administered. It has long been believed that chromosomal breaks are always associated with double-strand breaks (DSBs). We here provide compelling evidence against this canonical theory. We employed a genetic approach using two cell lines, chicken DT40 and human Nalm-6. We measured the number of chromosomal breaks induced by three replication-blocking agents (aphidicolin, 5-fluorouracil, and hydroxyurea) in DSB-repair-proficient wild-type cells and cells deficient in both homologous recombination and nonhomologous end-joining (the two major DSB-repair pathways). Exposure of cells to the three replication-blocking agents for at least two cell cycles resulted in comparable numbers of chromosomal breaks for RAD54−/−/KU70−/− DT40 clones and wild-type cells. Likewise, the numbers of chromosomal breaks induced in RAD54−/−/LIG4−/− Nalm-6 clones and wild-type cells were also comparable. These data indicate that the replication-blocking agents can cause chromosomal breaks unassociated with DSBs. In contrast with DSB-repair-deficient cells, chicken DT40 cells deficient in PIF1 or ATRIP, which molecules contribute to the completion of DNA replication, displayed higher numbers of mitotic chromosomal breaks induced by aphidicolin than did wild-type cells, suggesting that single-strand gaps left unreplicated may result in mitotic chromosomal breaks.

Collaboration


Dive into the Hiroyuki Sasanuma's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kouji Hirota

Tokyo Metropolitan University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yves Pommier

National Institutes of Health

View shared research outputs
Researchain Logo
Decentralizing Knowledge