Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Hisaaki Miyoshi is active.

Publication


Featured researches published by Hisaaki Miyoshi.


Molecular Cancer Therapeutics | 2012

The antidiabetic drug metformin inhibits gastric cancer cell proliferation in vitro and in vivo

Kiyohito Kato; Jian Gong; Hisakazu Iwama; Akira Kitanaka; Joji Tani; Hisaaki Miyoshi; Kei Nomura; Shima Mimura; Mitsuyoshi Kobayashi; Yuuichi Aritomo; Hideyuki Kobara; Hirohito Mori; Takashi Himoto; Keiichi Okano; Yasuyuki Suzuki; Koji Murao; Tsutomu Masaki

Recent studies suggest that metformin, which is commonly used as an oral anti-hyperglycemic agent of the biguanide family, may reduce cancer risk and improve prognosis, but the mechanisms by which metformin affects various cancers, including gastric cancer, remains unknown. The goal of the present study was to evaluate the effects of metformin on human gastric cancer cell proliferation in vitro and in vivo and to study microRNAs (miRNA) associated with antitumor effect of metformin. We used MKN1, MKN45, and MKN74 human gastric cancer cell lines to study the effects of metformin on human gastric cancer cells. Athymic nude mice bearing xenograft tumors were treated with or without metformin. Tumor growth was recorded after 4 weeks, and the expression of cell-cycle-related proteins was determined. In addition, we used miRNA array tips to explore the differences among miRNAs in MKN74 cells bearing xenograft tumors treated with or without metformin in vitro and in vivo. Metformin inhibited the proliferation of MKN1, MKN45, and MKN74 in vitro. Metformin blocked the cell cycle in G0–G1 in vitro and in vivo. This blockade was accompanied by a strong decrease of G1 cyclins, especially in cyclin D1, cyclin-dependent kinase (Cdk) 4, Cdk6 and by a decrease in retinoblastoma protein (Rb) phosphorylation. In addition, metformin reduced the phosphorylation of epidermal growth factor receptor and insulin-like growth factor-1 receptor in vitro and in vivo. The miRNA expression was markedly altered with the treatment of metformin in vitro and in vivo. Various miRNAs altered by metformin also may contribute to tumor growth in vitro and in vivo. Mol Cancer Ther; 11(3); 549–60. ©2012 AACR.


International Journal of Oncology | 2013

Effect of the anti-diabetic drug metformin in hepatocellular carcinoma in vitro and in vivo.

Hisaaki Miyoshi; Kiyohito Kato; Hisakazu Iwama; Emiko Maeda; Teppei Sakamoto; Koji Fujita; Yuka Toyota; Joji Tani; Takako Nomura; Shima Mimura; Mitsuyoshi Kobayashi; Asahiro Morishita; Hideki Kobara; Hirohito Mori; Hirohito Yoneyama; Akihiro Deguchi; Takashi Himoto; Kazutaka Kurokohchi; Keiichi Okano; Yasuyuki Suzuki; Koji Murao; Tsutomu Masaki

Metformin is a commonly used oral anti-hyperglycemic agent of the biguanide family. Recent studies suggest that metformin may reduce cancer risk and improve prognosis. However, the antitumor mechanism of metformin in several types of cancers, including hepatocellular carcinoma (HCC), has not been elucidated. The goal of the present study was to evaluate the effects of metformin on HCC cell proliferation in vitro and in vivo, and to study microRNAs (miRNAs) associated with the antitumor effect of metformin in vitro. We used the cell lines Alex, HLE and Huh7, and normal hepatocytes to study the effects of metformin on human HCC cells. In an in vivo study, athymic nude mice bearing xenograft tumors were treated with metformin or left untreated. Tumor growth was recorded after 4 weeks, and the expression of cell cycle-related proteins was determined. Metformin inhibited the proliferation of Alex, HLE and Huh7 cells in vitro and in vivo. Metformin blocked the cell cycle in G0/G1 in vitro and in vivo. This blockade was accompanied by a strong decrease of G1 cyclins, especially cyclin D1, cyclin E and cyclin-dependent kinase 4 (Cdk4). In addition, microRNA (miRNA) expression was markedly altered by the treatment with metformin in vitro and in vivo. In addition, various miRNAs induced by metformin also may contribute to the suppression of tumor growth. Our results demonstrate that metformin inhibits the growth of HCC, possibly by inducing G1 cell cycle arrest through the alteration of microRNAs.


International Journal of Oncology | 2013

Antitumor effect of metformin in esophageal cancer: In vitro study

Mitsuyoshi Kobayashi; Kiyohito Kato; Hisakazu Iwama; Shintaro Fujihara; Noriko Nishiyama; Shima Mimura; Yuka Toyota; Takako Nomura; Kei Nomura; Joji Tani; Hisaaki Miyoshi; Hideki Kobara; Hirohito Mori; Koji Murao; Tsutomu Masaki

Recent studies suggest that metformin, which is a member of the biguanide family and commonly used as an oral anti-hyperglycemic agent, may reduce cancer risk and improve prognosis of numerous types of cancer. However, the mechanisms underlying the antitumor effect of metformin on esophageal cancer remain unknown. The goal of the present study was to evaluate the effects of metformin on the proliferation of human ESCC in vitro, and to study changes in the expression profile of microRNAs (miRNAs), since miRNAs have previously been associated with the antitumor effects of metformin in other human cancers. The human ESCC cell lines T.T, KYSE30 and KYSE70 were used to study the effects of metformin on human ESCC in vitro. In addition, we used miRNA array tips to explore the differences between miRNAs in KYSE30 cells with and without metformin treatment. Metformin inhibited the proliferation of T.T, KYSE30 and KYSE70 cells in vitro. Metformin blocked the cell cycle in G0/G1 in vitro. This blockade was accompanied by a strong decrease of G1 cyclins, especially cyclin D1, as well as decreases in cyclin-dependent kinase (Cdk)4, Cdk6 and phosphorylated retinoblastoma protein (Rb). In addition, the expression of miRNAs was markedly altered with the treatment of metformin in vitro. Metformin inhibited the growth of three ESCC cell lines, and this inhibition may have involved reductions in cyclin D1, Cdk4 and Cdk6.


International Journal of Oncology | 2015

Antidiabetic drug metformin inhibits esophageal adenocarcinoma cell proliferation in vitro and in vivo.

Shintaro Fujihara; Kiyohito Kato; Asahiro Morishita; Hisakazu Iwama; Tomoko Nishioka; Taiga Chiyo; Noriko Nishiyama; Hisaaki Miyoshi; Mitsuyoshi Kobayashi; Hideki Kobara; Hirohito Mori; Keiichi Okano; Yasuyuki Suzuki; Tsutomu Masaki

Esophageal carcinoma is the eighth most common cancer worldwide and the sixth leading cause of cancer-related deaths, with one of the worst prognoses of any form of cancer. Treatment with the anti-diabetic drug metformin has been associated with reduced cancer incidence in patients with type 2 diabetes. This study therefore evaluated the effects of metformin on the proliferation, in vitro and in vivo, of human esophageal adenocarcinoma cells, as well as the microRNAs associated with the antitumor effects of metformin. Metformin inhibited the proliferation of the esophageal adenocarcinoma cell lines OE19, OE33, SK-GT4 and OACM 5.1C, blocking the G0 to G1 transition in the cell cycle. This was accompanied by strong reductions in G1 cyclins, especially cyclin D1, cyclin-dependent kinase (Cdk)4, and Cdk6, and decreases in retinoblastoma protein phosphorylation. In addition, metformin reduced the phosphorylation of epidermal growth factor receptor and insulin-like growth factor and insulin-like growth factor-1 receptor, as well as angiogenesis-related proteins, such as vascular endothelial growth factor, tissue inhibitor of metalloproteinases (TIMP)-1, and TIMP-2. Metformin also markedly altered microRNA expression. Treatment with metformin of athymic nude mice bearing xenograft tumors reduced tumor proliferation. These findings suggest that metformin may have clinical use in the treatment of esophageal adenocarcinoma.


International Journal of Oncology | 2015

Galectin-9 suppresses the growth of hepatocellular carcinoma via apoptosis in vitro and in vivo

Koji Fujita; Hisakazu Iwama; Teppei Sakamoto; Ryoichi Okura; Kiyoyuki Kobayashi; Jitsuko Takano; Akiko Katsura; Miwa Tatsuta; Emiko Maeda; Shima Mimura; Takako Nomura; Joji Tani; Hisaaki Miyoshi; Asahiro Morishita; Hirohito Yoneyama; Yuka Yamana; Takashi Himoto; Keiichi Okano; Yasuyuki Suzuki; Toshiro Niki; Mitsuomi Hirashima; Tsutomu Masaki

Galectin-9, a soluble β-galactoside-binding animal lectin, evokes apoptosis in various human cancer cell lines. The galectin-9 antitumor effect against hepatocellular carcinoma (HCC) is, however, unknown. We investigated whether galectin-9 suppresses HCC growth in vitro and in vivo. We assessed the antitumor effect of galectin-9 on HCC cells by conducting WST-8 assay in vitro and xenograft model analysis in vivo. Galectin-9-induced apoptosis was evaluated by FACS and ELISA in vitro and by TUNEL stain in vivo. Cell cycle alteration was profiled by FACS. Caspases were profiled by colorimetry. MicroRNAs related to the galectin-9 antitumor effects were determined using microarrays, and their antitumor effect was confirmed in a transfection study in vitro. The expression levels of the target proteins of the miRNAs extracted above were analyzed by western blot analysis. To summarize the results, galectin-9 inhibited the growth of the HCC cell lines HLE and Li-7 in vitro and Li-7 in vivo inducing apoptosis. Cell cycle turnover was not arrested in HLE and Li-7 cells in vitro. miR-1246 was similarly extracted both in vitro and in vivo, which sensitized Li-7 cells to apoptosis when transfected into the cells. DYRK1A, a target protein of miR-1246 was downregulated in Li-7 cells. Caspase-9 was upregulated in Li-7 cells in vitro and in vivo. In conclusion, galectin-9 inhibited the growth of HCC cells by apoptosis, but not cell cycle arrest, in vitro and in vivo. miR-1246 mediated signals of galectin-9, possibly through miR-1246-DYRK1A-caspase-9 axis. Galectin-9 might be a candidate agent for HCC chemotherapy.


Biological Trace Element Research | 2015

Exacerbation of Insulin Resistance and Hepatic Steatosis Deriving from Zinc Deficiency in Patients with HCV-Related Chronic Liver Disease

Takashi Himoto; Takako Nomura; Joji Tani; Hisaaki Miyoshi; Asahiro Morishita; Hirohito Yoneyama; Reiji Haba; Hisashi Masugata; Tsutomu Masaki

The role of zinc (Zn) in hepatic steatosis of patients with HCV-related chronic liver disease (CLD-C) remains uncertain, although persistent HCV infection often evokes hepatic steatosis. The primary purpose of this study was to elucidate the contribution of Zn deficiency to hepatic steatosis in patients with CLD-C. Fifty nondiabetic patients with CLD-C were enrolled. Hepatic 4-hydroxy-2-nonenal (4-HNE) expression was examined using an immunohistochemical procedure as a marker for lipid peroxidation. Serum ferritin levels were assessed for iron overload. Insulin resistance was evaluated using the values of the homeostasis model for assessment of insulin resistance (HOMA-IR). The severity of hepatic steatosis was graded on the classification system proposed by Brunt and colleagues. Serum Zn levels were inversely correlated with serum ferritin levels in the patients with CLD-C (r = −0.382, p = 0.0062). Serum ferritin levels were strongly associated with the HOMA-IR values (r = 0.476, p = 0.0005). Therefore, Zn deficiency resulted in insulin resistance through iron overload. Moreover, serum Zn levels were significantly decreased in proportion to the level of hepatic 4-HNE expression, which was enhanced as hepatic steatosis developed. Then, Zn deficiency eventually seemed to exacerbate hepatic steatosis by way of an increase in lipid peroxidation. However, the serum Zn levels were not associated with either loads of HCV-RNA or HCV genotypes. These data suggest that, in patients with CLD-C, Zn deficiency promotes insulin resistance by exacerbating iron overload in the liver and induces hepatic steatosis by facilitating lipid peroxidation.


World Journal of Gastroenterology | 2016

Diabetes mellitus and metformin in hepatocellular carcinoma

Koji Fujita; Hisakazu Iwama; Hisaaki Miyoshi; Joji Tani; Kyoko Oura; Tomoko Tadokoro; Teppei Sakamoto; Takako Nomura; Asahiro Morishita; Hirohito Yoneyama; Tsutomu Masaki

Hepatocellular carcinoma (HCC) is the leading cause of cancer-related death worldwide. Diabetes mellitus, a risk factor for cancer, is also globally endemic. The clinical link between these two diseases has been the subject of investigation for a century, and diabetes mellitus has been established as a risk factor for HCC. Accordingly, metformin, a first-line oral anti-diabetic, was first proposed as a candidate anti-cancer agent in 2005 in a cohort study in Scotland. Several subsequent large cohort studies and randomized controlled trials have not demonstrated significant efficacy for metformin in suppressing HCC incidence and mortality in diabetic patients; however, two recent randomized controlled trials have reported positive data for the tumor-preventive potential of metformin in non-diabetic subjects. The search for biological links between cancer and diabetes has revealed intracellular pathways that are shared by cancer and diabetes. The signal transduction mechanisms by which metformin suppresses carcinogenesis in cell lines or xenograft tissues and improves chemoresistance in cancer stem cells have also been elucidated. This review addresses the clinical and biological links between HCC and diabetes mellitus and the anti-cancer activity of metformin in clinical studies and basic experiments.


International Journal of Molecular Medicine | 2015

MicroRNA profiles following metformin treatment in a mouse model of non-alcoholic steatohepatitis

Akiko Katsura; Asahiro Morishita; Hisakazu Iwama; Joji Tani; Teppei Sakamoto; Miwa Tatsuta; Yuka Toyota; Koji Fujita; Kiyohito Kato; Emiko Maeda; Takako Nomura; Hisaaki Miyoshi; Hirohito Yoneyama; Takashi Himoto; Shintaro Fujiwara; Hideki Kobara; Hirohito Mori; Toshiro Niki; Masafumi Ono; Mitsuomi Hirashima; Tsutomu Masaki

Non-alcoholic steatohepatitis (NASH) is one of the most common causes of chronic liver disease and is considered to be a causative factor of cryptogenic cirrhosis and hepatocellular carcinoma. microRNAs (miRNAs) are small non-coding RNAs that negatively regulate messenger RNA (mRNA). Recently, it was demonstrated that the aberrant expression of certain miRNAs plays a pivotal role in liver disease. The aim of the present study was to evaluate changes in miRNA profiles associated with metformin treatment in a NASH model. Eight-week-old male mice were fed a methionine- and choline-deficient (MCD) diet alone or with 0.08% metformin for 15 weeks. Metformin significantly downregulated the level of plasma transaminases and attenuated hepatic steatosis and liver fibrosis. The expression of miRNA-376a, miRNA-127, miRNA-34a, miRNA-300 and miRNA-342-3p was enhanced among the 71 upregulated miRNAs, and the expression of miRNA-122, miRNA-194, miRNA-101b and miRNA-705 was decreased among 60 downregulated miRNAs in the liver of MCD-fed mice when compared with control mice. Of note, miRNA profiles were altered following treatment with metformin in MCD-fed mice. miRNA-376a, miRNA-127, miRNA-34a, miRNA-300 and miRNA-342-3p were down-regulated, but miRNA-122, miRNA-194, miRNA-101b and miRNA-705 were significantly upregulated in MCD-fed mice treated with metformin. miRNA profiles were altered in MCD-fed mice and metformin attenuated this effect on miRNA expression. Therefore, miRNA profiles are a potential tool that may be utilized to clarify the mechanism behind the metformin-induced improvement of hepatic steatosis and liver fibrosis. Furthermore, identification of targetable miRNAs may be used as a novel therapy in human NASH.


Critical Care | 2013

Galectin-9 prolongs the survival of septic mice by expanding tim-3-expressing natural killer T cells and PDCA-1 + CD11c + macrophages

Takashi Kadowaki; Asahiro Morishita; Toshiro Niki; Junko Hara; Miwa Sato; Joji Tani; Hisaaki Miyoshi; Hirohito Yoneyama; Tsutomu Masaki; Toshio Hattori; Akihiro Matsukawa; Mitsuomi Hirashima

IntroductionGalectin-9 ameliorates various inflammatory conditions including autoimmune diseases by regulating T cell and macrophage/dendritic cell (DC) functions. However, the effect of galectin-9 on polymicrobial sepsis has not been assessed.MethodsWe induced polymicrobial sepsis by cecal ligation and puncture (CLP) in mice. The survival rate was compared between galectin-9- and PBS-treated CLP mice. An ELISA was used to compare the levels of various cytokines in the plasma and culture supernatants. Fluorescence-activated cell sorting analysis was further performed to compare the frequencies of subpopulations of spleen cells.ResultsGalectin-9 exhibited a protective effect in polymicrobial sepsis as demonstrated in galetin-9 transgenic mice and therapeutic galectin-9 administration. In contrast, such effect was not observed in nude mice, indicating the involvement of T cells in galectin-9-mediated survival prolongation. Galectin-9 decreased TNFα, IL-6, IL-10 and, high mobility group box 1 (HMGB1) and increased IL-15 and IL-17 plasma and spleen levels. Galectin-9 increased the frequencies of natural killer T (NKT) cells and PDCA-1+ CD11c+ macrophages (pDC-like macrophages) but did not change the frequency of CD4 or CD8 T cells, γδT cells or conventional DC. As expected, galectin-9 decreased the frequency of Tim-3+ CD4 T cells, most likely Th1 and Th17 cells. Intriguingly, many spleen NK1.1+ NKT cells and pDC-like macrophages expressed Tim-3. Galectin-9 increased the frequency of Tim-3-expressing NK1.1+ NKT cells and pDC-like macrophages. Galectin-9 further increased IL-17+ NK1.1+ NKT cells.ConclusionThese data suggest that galectin-9 exerts therapeutic effects on polymicrobial sepsis, possibly by expanding NKT cells and pDC-like macrophages and by modulating the production of early and late proinflammatory cytokines.


International Journal of Molecular Medicine | 2014

Profile of microRNAs associated with aging in rat liver.

Shima Mimura; Hisakazu Iwama; Kiyohito Kato; Kei Nomura; Mitsuyoshi Kobayashi; Hirohito Yoneyama; Hisaaki Miyoshi; Joji Tani; Asahiro Morishita; Takashi Himoto; Akihiro Deguchi; Takako Nomura; Teppei Sakamoto; Koji Fujita; Emiko Maeda; Kunihiko Izuishi; Keiichi Okano; Yasuyuki Suzuki; Tsutomu Masaki

Recent studies suggest that small non‑coding microRNAs (miRNAs or miRs) play an important role in the regulation of genes involved in various cellular and developmental processes. However, the expression of miRNAs during the aging process remains largely unknown. The aim of the present study was to analyze miRNA expression profiles in rat livers during the aging process. The livers of male Wistar rats at different stages of development (fetal, aged 3 days, and 1, 2, 4, 8 and 36 weeks of age) were used. Total RNA was extracted from the livers. We analyzed the expression levels of 679 rat miRNA probes. In addition, immunohistochemical staining for proliferating cell nuclear antigen (PCNA) was performed. Several up- and downregulated miRNAs were identified in the rat livers at 7 different fetal developmental stages and at 36 weeks of age. We observed the upregulation of miR‑29a, miR‑29c, miR‑195 and miR‑497, whereas miR‑301a, miR‑148b-3p, miR‑7a, miR‑93, miR‑106b, miR‑185, miR‑450a, miR‑539 and miR‑301b were downregulated in the aging rat livers. The number of PCNA-positive hepatocytes was decreased with age. In conclusion, our findings suggest that these up- and downregulated miRNAs play an important role in aging by regulating cell cycles that are involved in liver senescence. Further investigation is required to reveal additional target genes of the miRNAs expressed in the liver and the roles of miRNAs in the developmental process of aging in the liver.

Collaboration


Dive into the Hisaaki Miyoshi's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge