Hisakazu Matsumura
University of Tsukuba
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Hisakazu Matsumura.
Genetics | 2008
Baohui Liu; Akira Kanazawa; Hisakazu Matsumura; Ryoji Takahashi; Kyuya Harada; Jun Abe
Gene and genome duplications underlie the origins of evolutionary novelty in plants. Soybean, Glycine max, is considered to be a paleopolyploid species with a complex genome. We found multiple homologs of the phytochrome A gene (phyA) in the soybean genome and determined the DNA sequences of two paralogs designated GmphyA1 and GmphyA2. Analysis of the GmphyA2 gene from the lines carrying a recessive allele at a photoperiod insensitivity locus, E4, revealed that a Ty1/copia-like retrotransposon was inserted in exon 1 of the gene, which resulted in dysfunction of the gene. Mapping studies suggested that GmphyA2 is encoded by E4. The GmphyA1 gene was mapped to a region of linkage group O, which is homeologous to the region harboring E4 in linkage group I. Plants homozygous for the e4 allele were etiolated under continuous far red light, but the de-etiolation occurred partially, indicating that the mutation alone did not cause a complete loss of phyA function. The genetic redundancy suggests that the presence of duplicated copies of phyA genes accounts for the generation of photoperiod insensitivity, while protecting against the deleterious effects of mutation. Thus, this phenomenon provides a link between gene duplication and establishment of an adaptive response of plants to environments.
Plant Molecular Biology | 2006
Ryoji Takahashi; Stephen M. Githiri; Kouta Hatayama; Emilyn G. Dubouzet; Norimoto Shimada; Toshio Aoki; Shin-ichi Ayabe; Tsukasa Iwashina; Kyoko Toda; Hisakazu Matsumura
The Wm locus of soybean [Glycine max (L.) Merr.] controls flower color. Dominant Wm and recessive wm allele of the locus produce purple and magenta flower, respectively. A putative full-length cDNA of flavonol synthase (FLS), gmfls1 was isolated by 5′ RACE and end-to-end PCR from a cultivar Harosoy with purple flower (WmWm). Sequence analysis revealed that gmfls1 consisted of 1,208 nucleotides encoding 334 amino acids. It had 59–72% homology with FLS proteins of other plant species. Conserved dioxygenase domains A and B were found in the deduced polypeptide. Sequence comparison between Harosoy and Harosoy-wm (magenta flower mutant of Harosoy; wmwm) revealed that they differed by a single G deletion in the coding region of Harosoy-wm. The deletion changed the subsequent reading frame resulting in a truncated polypeptide consisting of 37 amino acids that lacked the dioxygenase domains A and B. Extracts of E. coli cells expressing gmfls1 of Harosoy catalyzed the formation of quercetin from dihydroquercetin, whereas cell extracts expressing gmfls1 of Harosoy-wm had no FLS activity. Genomic Southern analysis suggested the existence of three to four copies of the FLS gene in the soybean genome. CAPS analysis was performed to detect the single-base deletion. Harosoy and Clark (WmWm) exhibited longer fragments, while Harosoy-wm had shorter fragments due to the single-base deletion. The CAPS marker co-segregated with genotypes at Wm locus in a F2 population segregating for the locus. Linkage mapping using SSR markers revealed that the Wm and gmfls1 were mapped at similar position in the molecular linkage group F. The above results strongly suggest that gmfls1 represents the Wm gene and that the single-base deletion may be responsible for magenta flower color.
Journal of Heredity | 2008
Ryoji Takahashi; Hisakazu Matsumura; Maurice E. Oyoo; Nisar A. Khan
Flower color of soybean is primarily controlled by genes W1, W3, W4, Wm, and Wp. In addition, the soybean gene symbol W2, w2 produces purple-blue flower in combination with W1. This study was conducted to determine the genetic control of purple-blue flower of cultivar (cv). Nezumisaya. F(1) plants derived from a cross between Nezumisaya and purple flower cv. Harosoy had purple flowers. Segregation of the F(2) plants fitted a ratio of 3 purple:1 purple-blue. F(3) lines derived from F(2) plants with purple-blue flowers were fixed for purple-blue flowers, whereas those from F(2) plants with purple flowers fitted a ratio of 1 fixed for purple flower:2 segregating for flower color. These results indicated that the flower color of Nezumisaya is controlled by a single gene whose recessive allele is responsible for purple-blue flower. Complementation analysis revealed that flower color of Nezumisaya is controlled by W2. Linkage mapping revealed that W2 is located in molecular linkage group B2. Sap obtained from banner petals of cvs. with purple flower had a pH value of 5.73-5.77, whereas that of cvs. with purple-blue flower had a value of 6.07-6.10. Our results suggested that W2 is responsible for vacuolar acidification of flower petals.
Journal of Heredity | 2008
Hisakazu Matsumura; Baohui Liu; Jun Abe; Ryoji Takahashi
Days to flowering and maturity are controlled by genes E1-E7 and J in soybean. Previous studies revealed that E1-E5 and E7 influence tolerances to low-temperature-induced seed coat browning in different directions at various intensities. The E4 locus is useful for the development of early maturing cultivars with chilling tolerance because the recessive allele conditions both the early-maturing habit and chilling tolerance. This study was conducted to obtain a fine map of E4 by amplified fragment length polymorphism (AFLP) analysis using a F(8:9) family segregating for E4 that was developed from a cross between photoperiod-insensitive Japanese landraces, Sakamotowase (E4) and Miharudaizu (e4). AFLP analysis using a total of 4096 primer pairs detected 20 polymorphic markers between near-isogenic lines for E4. Linkage mapping incorporated 16 AFLP markers into a previously constructed genetic map around E4 in linkage group I. Eight AFLP markers were localized to unfilled areas between E4 and the closest markers identified previously. Two AFLP markers flanking E4, e48m41-8 and e18m38-8, were mapped at positions 0.6 and 5.4 cM apart from E4, respectively. They were dominant and in cis arrangement with the recessive allele (e4) conditioning the photoperiod insensitivity and chilling tolerance. These markers can be used in developing more precise markers for fine mapping and marker-assisted selection and in isolating the underlying gene via genome walking approaches.
The Plant Genome | 2009
Hisakazu Matsumura; Hiroshi Kitajima; Shinji Akada; Jun Abe; Nobuhiro Minaka; Ryoji Takahashi
The cryptochromes are a family of blue light photoreceptors that play important roles in the controls of plant development. Seven full‐length cryptochrome cDNAs (GmCRY1a, GmCRY1b, GmCRY1c, GmCRY1d, GmCRY2a, GmCRY2b, and GmCRY2c) were isolated by cDNA library screening and reverse transcriptase–polymerase chain reaction from ‘Williams’ soybean [Glycine max (L.) Merr.], indicating that soybean cryptochrome genes comprise a multigene family. They had homologies ranging from 60 to 89% with CRY1 and CRY2 genes of Arabidopsis and pea (Pisum sativum L.). Two types of transcripts were isolated in GmCRY1b, GmCRY1c, GmCRY1d, and GmCRY2a. One type was derived from four exons, whereas the other type was derived from five exons. Occurrence of the former transcript could be explained by retention of the fourth intron, suggesting existence of alternative splicing. Gene sequences were compared between a soybean line, Tokei 780, and an accession of soybean wild relative, Glycine soja, Hidaka 4. Based on a 10‐bp indel, an amplicon length polymorphism (ALP) marker was designed for mapping of GmCRY2b. For mapping of the other cryptochrome genes, derived cleaved amplified polymorphic sequence (dCAPS) markers were constructed. The cryptochrome genes were individually assigned to different molecular linkage groups (MLG) (GmCRY1a: MLG C1; GmCRY1b: C2; GmCRY1c: B2; GmCRY1d: F; GmCRT2a: O; GmCRY2b: D1b; GmCRY2c: I). The distribution of cryptochrome genes that was deduced from the soybean genome database was consistent with mapping results.
Theoretical and Applied Genetics | 2005
Hisakazu Matsumura; Satoshi Watanabe; Kyuya Harada; Mineo Senda; Shinji Akada; S. Kawasaki; E. G. Dubouzet; N. Minaka; Ryoji Takahashi
Agronomy | 2013
Yasutaka Tsubokura; Hisakazu Matsumura; Meilan Xu; Baohui Liu; Hiroko Nakashima; Toyoaki Anai; Fanjiang Kong; Xiaohui Yuan; Hiroyuki Kanamori; Yuichi Katayose; Ryoji Takahashi; Kyuya Harada; Jun Abe
BMC Plant Biology | 2010
Ryoji Takahashi; Joseph G. Dubouzet; Hisakazu Matsumura; Kentaro Yasuda; Tsukasa Iwashina
Crop Science | 2008
Tsukasa Iwashina; Maurice E. Oyoo; Nisar A. Khan; Hisakazu Matsumura; Ryoji Takahashi
Crop Science | 2010
Maurice E. Oyoo; Eduardo R. Benitez; Hisakazu Matsumura; Ryoji Takahashi