Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Hisanori Matsui is active.

Publication


Featured researches published by Hisanori Matsui.


Biology of Reproduction | 2009

Significance of Neonatal Testicular Sex Steroids to Defeminize Anteroventral Periventricular Kisspeptin Neurons and the GnRH/LH Surge System in Male Rats

Tamami Homma; Mototsugu Sakakibara; Shunji Yamada; Mika Kinoshita; Kinuyo Iwata; Junko Tomikawa; Tetsuhiro Kanazawa; Hisanori Matsui; Yoshihiro Takatsu; Tetsuya Ohtaki; Hirokazu Matsumoto; Yoshihisa Uenoyama; Kei-ichiro Maeda; Hiroko Tsukamura

The brain mechanism regulating gonadotropin-releasing hormone (GnRH)/luteinizing hormone (LH) release is sexually differentiated in rodents. Kisspeptin neurons in the anteroventral periventricular nucleus (AVPV) have been suggested to be sexually dimorphic and involved in the GnRH/LH surge generation. The present study aimed to determine the significance of neonatal testicular androgen to defeminize AVPV kisspeptin expression and the GnRH/LH surge-generating system. To this end, we tested whether neonatal castration feminizes AVPV kisspeptin neurons and the LH surge-generating system in male rats and whether neonatal estradiol benzoate (EB) treatment suppresses the kisspeptin expression and the LH surge in female rats. Immunohistochemistry, in situ hybridization, and quantitative real-time RT-PCR were performed to investigate kisspeptin and Kiss1 mRNA expressions. Male rats were castrated immediately after birth, and females were treated with EB on postnatal Day 5. Neonatal castration caused an increase in AVPV kisspeptin expression at peptide and mRNA levels in the genetically male rats, and the animals showed surge-like LH release in the presence of the preovulatory level of estradiol (E2) at adulthood. On the other hand, neonatal EB treatment decreased the number of AVPV kisspeptin neurons and caused an absence of E2-induced LH surge in female rats. Semiquantitative RT-PCR analysis showed that neonatal steroidal manipulation affects Kiss1 expression but does not significantly affect gene expressions of neuropeptides (neurotensin and galanin) and enzymes or transporter for neurotransmitters (gamma-aminobutyric acid, glutamate, and dopamine) in the AVPV, suggesting that the manipulation specifically affects Kiss1 expressions. Taken together, our present results provide physiological evidence that neonatal testicular androgen causes the reduction of AVPV kisspeptin expression and failure of LH surge in genetically male rats. Thus, it is plausible that perinatal testicular androgen causes defeminization of the AVPV kisspeptin system, resulting in the loss of the surge system in male rats.


Journal of Neuroendocrinology | 2009

Possible role of oestrogen in pubertal increase of Kiss1/kisspeptin expression in discrete hypothalamic areas of female rats.

Kenji Takase; Yoshihisa Uenoyama; Naoko Inoue; Hisanori Matsui; Shunji Yamada; M. Shimizu; Tamami Homma; Junko Tomikawa; Shinji Kanda; Hisatoshi Matsumoto; Yoshitaka Oka; Hiroko Tsukamura; Kei-ichiro Maeda

Kisspeptin, a peptide encoded by the Kiss1 gene, has been considered as a potential candidate for a factor triggering the onset of puberty, and its expression in the hypothalamus was found to increase during peripubertal period in rodent models. The present study aimed to clarify the oestrogenic regulation of peripubertal changes in Kiss1 mRNA expression in the anteroventral periventricular nucleus (AVPV) and hypothalamic arcuate nucleus (ARC), and to determine which population of kisspeptin neurones shows a change in kisspeptin expression parallel to that in luteinising hormone (LH) pulses at the peripubertal period. Quantitative reverse transcriptase‐polymerase chain reaction and immunohistochemistry revealed an apparent increase in the ARC Kiss1 mRNA expression and kisspeptin immunoreactivity around the time of vaginal opening in intact female rats. The AVPV Kiss1 mRNA levels also increased at day 26, but decreased at day 31, and then increased at day 36/41. In ovariectomised (OVX) rats, ARC Kiss1 mRNA expression did not show peripubertal changes and was kept at a high level throughout peripubertal periods. Apparent LH pulses were found in these prepubertal OVX rats. Oestradiol replacement suppressed ARC Kiss1 mRNA expression in OVX prepubertal rats, but not in adults. Similarly, LH pulses were suppressed by oestradiol in the prepubertal period (days 21 and 26), but regular pulses were found in adulthood. The present study suggests that a pubertal increase of Kiss1/kisspeptin expression both in the ARC and AVPV is involved in the onset of puberty. These results also suggest that both LH pulses and ARC Kiss1 expression are more negatively regulated by oestrogen in prepubertal female rats compared to adult rats.


Endocrinology | 2012

Chronic Administration of the Metastin/Kisspeptin Analog KISS1-305 or the Investigational Agent TAK-448 Suppresses Hypothalamic Pituitary Gonadal Function and Depletes Plasma Testosterone in Adult Male Rats

Hisanori Matsui; Akira Tanaka; Kotaro Yokoyama; Yoshihiro Takatsu; Kaori Ishikawa; Taiji Asami; Naoki Nishizawa; Atsuko Suzuki; Satoshi Kumano; Michiko Terada; Masami Kusaka; Chieko Kitada; Tetsuya Ohtaki

Metastin/kisspeptin, a hypothalamic peptide, plays a pivotal role in controlling GnRH neurons. Here we studied the effect of chronic sc administration of two kisspeptin analogs, KISS1-305 and TAK-448, on hypothalamic-pituitary-gonadal function in male rats in comparison with a GnRH analogue leuprolide or bilateral orchiectomy (ORX). The prototype polypeptide, KISS1-305 (1-4 nmol/h), caused substantial elevations of plasma LH and testosterone, followed by abrupt reductions of both hormone levels. Notably, testosterone levels were reduced to castrate levels within 3 d and remained depleted throughout the 4-wk dosing period, an effect that was faster and more pronounced than leuprolide (1 nmol/h) dosing. KISS1-305 also reduced genital organ weight more profoundly than leuprolide. In mechanistic studies, chronic KISS1-305 administration only transiently induced c-Fos expression in GnRH neurons, suggesting that GnRH-neural response was attenuated over time. Hypothalamic GnRH content was reduced to 10-20% of control at 3 wk without any changes in Gnrh mRNA expression. Dosing with the investigational peptide TAK-448 was also studied to extend our understanding of hypothalamic-pituitary functions. Similar to ORX, TAK-448 (0.1 nmol/h) depleted testosterone and decreased GnRH content by 4 wk. However, in contrast to ORX, TAK-448 decreased gonadotropin levels in pituitary and plasma samples, implying the suppression of GnRH pulses. These results suggest that chronic administration of kisspeptin analogs disrupts endogenous kisspeptin signals to suppress intrinsic GnRH pulses, perhaps by attenuating GnRH-neural response and inducing continuous GnRH leakage from the hypothalamus. The potential utility of kisspeptin analogs as novel agents to treat hormone-related diseases, including prostate cancer, is discussed.


The Journal of Clinical Endocrinology and Metabolism | 2014

Sustained Exposure to the Investigational Kisspeptin Analog, TAK-448, Down-Regulates Testosterone into the Castration Range in Healthy Males and in Patients With Prostate Cancer: Results From Two Phase 1 Studies

David B. MacLean; Hisanori Matsui; Ajit Suri; Rachel Neuwirth; Marc Colombel

BACKGROUND/OBJECTIVE Kisspeptin-54, an endogenous naturally occurring ligand of the G protein-coupled receptor-54, stimulates GnRH-gonadotropin secretion and suppresses metastases in animal models of cancer but is subject to rapid degradation and inactivation. TAK-448 is an investigational oligopeptide analog of the fully active 10-amino acid C terminus of kisspeptin-54. This phase 1 study evaluated the safety, pharmacokinetics, and pharmacodynamics of TAK-448 in healthy subjects and patients with prostate cancer (PC). DESIGN Healthy subjects aged 50 years or older received TAK-448 sc as a single-bolus or 2-hour infusion (0.01-6 mg/d; part A) and as a 14-day sc administration (0.01-1 mg/d; part B). In a subsequent, open-label, phase 1 study in PC patients aged 40-78 years, TAK-448 was given as a 1-month depot formulation. RESULTS Eighty-two healthy subjects received TAK-448; 30 received placebo. Grades 1-2 adverse events were reported in 26% of subjects during TAK-448 treatment. All dosing regimens resulted in dose-proportional exposures. The maximum observed plasma concentration occurred after 0.25-0.5 hours, and median terminal elimination half-life was 1.4-5.3 hours. T increased approximately 1.3- to 2-fold by 48 hours after a single bolus or 2 hour injections, whereas during the 14-day infusion, at doses above 0.1 mg/d, T dropped to below-baseline values by 60 hours and reached a subsequently sustained below-castration level by day 8. In PC patients, T decreased to less than 20 ng/dL in four of five patients dosed with 12 or 24 mg TAK-448 sc-depot injections. The prostate-specific antigen decreased greater than 50% in all patients dosed with 24 mg. CONCLUSIONS Continuous TAK-448 infusion was well tolerated by healthy males and resulted in sustained T suppression. Depot injection in patients with PC similarly reduced T and resulted in prostate-specific antigen responses.


Journal of Medicinal Chemistry | 2013

Design, Synthesis, and Biological Evaluation of Novel Investigational Nonapeptide KISS1R Agonists with Testosterone-Suppressive Activity

Taiji Asami; Naoki Nishizawa; Hisanori Matsui; Kimiko Nishibori; Yoshihiro Ishibashi; Yasuko Horikoshi; Masaharu Nakayama; Shin-ichi Matsumoto; Naoki Tarui; Masashi Yamaguchi; Hirokazu Matsumoto; Tetsuya Ohtaki; Chieko Kitada

Metastin/kisspeptin is a 54 amino acid peptide ligand of the KISS1R receptor and is a critical regulator of GnRH secretion. The N-terminally truncated peptide, metastin(45-54), possesses a 10-fold higher receptor-binding affinity than full-length metastin and agonistic KISS1R activity but is rapidly inactivated in rodent plasma. We have developed a decapeptide analog [D-Tyr(45),D-Trp(47),azaGly(51),Arg(Me)(53)]metastin(45-54) with improved serum stability compared with metastin(45-54) but with decreased KISS1R agonistic activity. Amino acid replacements at positions 45-47 led to an enhancement of KISS1R agonistic activity and metabolic stability. N-terminal truncation resulted in a stable nonapeptide, [D-Tyr(46),D-Pya(4)(47),azaGly(51),Arg(Me)(53)]metastin(46-54), compound 26, which displayed KISS1R binding affinities comparable to metastin(45-54) and had improved serum stability. Compound 26 reduced plasma testosterone in male rats and is the first short-length metastin analog to possess testosterone suppressive activities. Compound 26 has led to the elucidation of investigational analogs TAK-683 and TAK-448, both of which have undergone clinical evaluation for hormone-dependent diseases such as prostate cancer.


European Journal of Pharmacology | 2014

Pharmacologic profiles of investigational kisspeptin/metastin analogues, TAK-448 and TAK-683, in adult male rats in comparison to the GnRH analogue leuprolide.

Hisanori Matsui; Tsuneo Masaki; Yumiko Akinaga; Atsushi Kiba; Yoshihiro Takatsu; Daisuke Nakata; Akira Tanaka; Junko Ban; Shin-ichi Matsumoto; Satoshi Kumano; Atsuko Suzuki; Yukihiro Ikeda; Masashi Yamaguchi; Tatsuya Watanabe; Tetsuya Ohtaki; Masami Kusaka

Kisspeptin/metastin, a hypothalamic peptide, plays a pivotal role in controlling gonadotropin-releasing hormone (GnRH) neurons, and we have shown that continuous subcutaneous administration of kisspeptin analogues suppresses plasma testosterone in male rats. This study examined pharmacologic profiles of investigational kisspeptin analogues, TAK-448 and TAK-683, in male rats. Both analogues showed high receptor-binding affinity and potent and full agonistic activity for rat KISS1R, which were comparable to natural peptide Kp-10. A daily subcutaneous injection of TAK-448 and TAK-683 (0.008-8μmol/kg) for consecutive 7 days initially induced an increase in plasma luteinizing hormone and testosterone levels; however, after day 7, plasma hormone levels and genital organ weights were reduced. Continuous subcutaneous administrations of TAK-448 (≥10pmol/h, ca. 0.7nmol/kg/day) and TAK-683 (≥30pmol/h, ca. 2.1nmol/kg/day) induced a transient increase in plasma testosterone, followed by abrupt reduction of plasma testosterone to castrate levels within 3-7 days. This profound testosterone-lowering effect was sustained throughout 4-week dosing periods. At those dose levels, the weights of the prostate and seminal vesicles were reduced to castrate levels. These suppressive effects of kisspeptin analogues were more rapid and profound than those induced by the GnRH agonist analogue leuprolide treatment. In addition, TAK-683 reduced plasma prostate specific antigen (PSA) in the JDCaP androgen-dependent prostate cancer rat model. Thus, chronic administration of kisspeptin analogues may hold promise as a novel therapeutic approach for suppressing reproductive functions and hormone-related diseases such as prostate cancer. Further studies are warranted to elucidate clinical significance of TAK-448 and TAK-683.


Neuroendocrinology | 2014

Effects and Therapeutic Potentials of Kisspeptin Analogs: Regulation of the Hypothalamic-Pituitary-Gonadal Axis

Hisanori Matsui; Taiji Asami

The hypothalamic peptide kisspeptin (metastin), the endogenous ligand of the G protein-coupled receptor KISS1R, plays a critical role in controlling GnRH release from hypothalamic GnRH neurons and thereby regulates hypothalamic-pituitary-gonadal functions. Although the therapeutic potential of kisspeptin is attractive, its susceptibility to proteolytic degradation limits its utility. To overcome this, KISS1R agonists or antagonists as peptide analogs or small molecules have been investigated. Kisspeptin analogs have been most extensively studied by reducing the length of the peptide from the original 54 amino acids to 10 amino acids or less and by substituting key amino acid residues. Also, 2 investigational kisspeptin agonist analogs have been evaluated in clinical studies in men; in agreement with animal studies, abrupt elevations in gonadotropin and testosterone levels were observed as an acute effect, followed by rapid reductions in these hormones as a chronic effect. Some studies of small-molecule KISS1R antagonists have also been published. In this review, we present a brief overview on kisspeptin/KISS1R physiology in reproductive functions and summarize the available knowledge of both agonists and antagonists. We also focus on the kisspeptin agonist analogs by summarizing key pharmacological findings from both clinical and preclinical studies, and discuss their potential therapeutic utility.


General and Comparative Endocrinology | 2013

Reduced responsiveness of kisspeptin neurons to estrogenic positive feedback associated with age-related disappearance of LH surge in middle-age female rats

Misawa Niki Ishii; Kiyoshi Matsumoto; Hisanori Matsui; Nobuyuki Seki; Hirokazu Matsumoto; Kaori Ishikawa; Fumio Chatani; Gen Watanabe; Kazuyoshi Taya

Age-related disappearance of the LH surge is one of major biomarkers of reproductive aging in female rats. Kisspeptin neurons in the hypothalamic anteroventral periventricular nucleus (AVPV) are proposed as the critical regulator of the preovulatory LH surge in response to estrogenic positive feedback. Here we investigated the possible involvement of the AVPV kisspeptin neurons in the disappearance of the LH surge in middle-age rats. Middle-age rats exhibiting persistent estrus (M-PE) did not show an LH surge although neither Kiss1 mRNA nor peptide in the AVPV was differentially expressed when compared to young rats exhibiting normal estrous cycles (YN). M-PE released LH in response to exogenous kisspeptin in a similar dose-dependent manner as YN, suggesting that their GnRH neurons still maintained responsiveness to kisspeptin. To investigate the estrogenic positive feedback effect on kisspeptin neurons in the AVPV, rats were ovariectomized and supplemented with estradiol (OVX+E2). We performed in situ hybridization and immunohistochemistry for Kiss1 mRNA and cFos, respectively, and found that M-PE exhibited a significantly lower percentage of Kiss1 mRNA positive neurons with cFos immunoreactivity, although the total number of kisspeptin neurons was not different from that in cyclic rats. Furthermore, OVX+E2 M-PE did not show the surge-like LH release under high estradiol administration while YN did. Thus our current study suggests that the reduced responsiveness of the AVPV kisspeptin neurons to estrogenic positive feedback presumably results in the decrease in kisspeptin secretion from neurons and eventually causes the age-related disappearance of the LH surge in middle age female rats.


Journal of Pharmaceutical and Biomedical Analysis | 2012

Development and validation of sensitive sandwich ELISAs for two investigational nonapeptide metastin receptor agonists, TAK-448 and TAK-683

Nobuyo Yoshida; Naoki Nishizawa; Hisanori Matsui; Yuu Moriya; Chieko Kitada; Taiji Asami; Hirokazu Matsumoto

TAK-448 and TAK-683, investigational agents with potential utility in the treatment of prostate cancer, are potent low molecular weight metastin receptor agonists consisting of nine amino acids. Monoclonal antibodies (mAbs) against these agents were developed to facilitate their evaluation in preclinical studies. Six mAbs were obtained from four immunogens. Three mAbs recognized the C-terminal of TAK-683 and TAK-448, two recognized the N-terminal of TAK-683, and one recognized the N-terminal of TAK-448. Using various combinations of these six mAbs, sandwich ELISAs for TAK-448 and TAK-683 were developed. These assays were highly sensitive, specific, and accurate. The detection limit for TAK-448 and TAK-683 was 3 and 5 pg/mL, respectively, and there was no interference from rat plasma, rat metastin, or analogs of TAK-448/TAK-683. Recovery achieved ≤±10% with intra-/inter-day assay precision coefficient of variation <10%. The assay demonstrated high stability and sample pre-treatment was not required. Each assay detected the dose-dependent concentration of TAK-448 and TAK-683 in blood 24h after a single intravenous administration of 0.1 and 1mg/kg doses. In conclusion, sensitive sandwich ELISAs were developed to detect the small peptides TAK-448 and TAK-683. The novel assays reliably quantified these nonapeptides in rat plasma, and thus will be useful for preclinical studies of these agents. This methodology may be applicable to the development of similar assays for other short peptides.


Reproduction in Domestic Animals | 2014

Ovarian and Hormonal Responses to Follicular Phase Administration of Investigational Metastin/Kisspeptin Analog, TAK‐683, in Goats

Y Goto; Natsumi Endo; Kiyosuke Nagai; Satoshi Ohkura; Yoshihiro Wakabayashi; Akira Tanaka; Hisanori Matsui; Masami Kusaka; Hiroaki Okamura; Tomomi Tanaka

This study evaluated the effects of follicular phase administration of TAK-683, an investigational metastin/kisspeptin analog, on follicular growth, ovulation, luteal function and reproductive hormones in goats. After confirmation of ovulation by transrectal ultrasonography (Day 0), PGF2α (2 mg/head of dinoprost) was administered intramuscularly on Day 10 to induce luteal regression. At 12 h after PGF2α administration, intravenous administration of vehicle or 35 nmol (50 μg)/head of TAK-683 was performed in control (n = 4) and treatment (n = 4) groups, respectively. Blood samples were collected at 6-h intervals for 96 h and then daily until the detection of subsequent ovulation (second ovulation). After the second ovulation, ultrasound examinations and blood sampling were performed every other day or daily until the subsequent ovulation (third ovulation). Mean concentrations of LH and FSH in the treatment group were significantly higher 6 h after TAK-683 treatment than those in the control group (12.0 ± 10.7 vs 1.0 ± 0.7 ng/ml for LH, 47.5 ± 28.2 vs 15.1 ± 3.4 ng/ml for FSH, p < 0.05), whereas mean concentrations of oestradiol in the treatment group decreased immediately after treatment (p < 0.05) as compared with the control group. Ovulation tended to be delayed (n = 2) or occurred early (n = 1) in the treatment group as compared with the control group. For the second ovulation, ovulatory follicles in the treatment group were significantly smaller in maximal diameter than in the control group (3.8 ± 0.5 vs 5.4 ± 0.2 mm, p < 0.05, n = 3). Administration of TAK-683 in the follicular phase stimulates gonadotropin secretion and may have resulted in ovulation of premature follicles in goats.

Collaboration


Dive into the Hisanori Matsui's collaboration.

Top Co-Authors

Avatar

Hirokazu Matsumoto

Takeda Pharmaceutical Company

View shared research outputs
Top Co-Authors

Avatar

Tetsuya Ohtaki

Takeda Pharmaceutical Company

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Masami Kusaka

Takeda Pharmaceutical Company

View shared research outputs
Top Co-Authors

Avatar

Taiji Asami

Takeda Pharmaceutical Company

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Chieko Kitada

Takeda Pharmaceutical Company

View shared research outputs
Top Co-Authors

Avatar

Naoki Nishizawa

Takeda Pharmaceutical Company

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Tomomi Tanaka

Tokyo University of Agriculture and Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge