Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Hisashi Aso is active.

Publication


Featured researches published by Hisashi Aso.


Biology of Reproduction | 2002

Remarkable Differences in Telomere Lengths among Cloned Cattle Derived from Different Cell Types

Norikazu Miyashita; Kazuho Shiga; Miharu Yonai; Kanako Kaneyama; Shuji Kobayashi; Toshiyuki Kojima; Yuji Goto; Masao Kishi; Hisashi Aso; Toshiyuki Suzuki; Minoru Sakaguchi; Takashi Nagai

Abstract Regarding cloned animals, interesting questions have been raised as to whether cloning restores cellular senescence undergone by their donor cells and how long cloned animals will be able to live. Focusing our attention on differences in telomere lengths depending on the tissue, we had produced 14 cloned cattle by using nuclei of donor cells derived from muscle, oviduct, mammary, and ear skin. Here, we show remarkable variation in telomere lengths among them using Southern blot analysis with telomere-specific probe. Telomere lengths in cloned cattle derived from muscle cells of an old bull were longer than those of a donor animal but were within the variation in normal calves. On the other hand, those derived from oviductal and mammary epithelial cells of an equally old cow were surprisingly shorter than any found in control cattle. The telomere lengths of cloned cattle derived from fibroblasts and oviductal epithelial cells of younger cattle showed the former and the latter results, respectively. In both cases, however, less telomere erosion or telomere extension from nuclear transfer to birth in most cloned cattle was observed in comparison with telomere erosion from fertilization to birth in control cattle. Embryonic cell-cloned cattle and their offspring calves were also shown to have telomeres longer than those in age-matched controls. These observations indicate that cloning does not necessarily restore the telomere clock but, rather, that nuclear transfer itself may commonly trigger an elongation of telomeres, probably more or less according to donor cell type. Remarkable variations among cloned cattle are suggested to be caused by variation in telomere length among donor cells and more or less elongation of telomere lengths induced by cloning.


Microbiology | 1999

Lactococcus lactis contains only one glutamate decarboxylase gene

Masaru Nomura; Ikuyo Nakajima; Yasuhita Fujita; Miho Kobayashi; Hiromi Kimoto; Ichirou Suzuki; Hisashi Aso

Glutamate decarboxylase, which is associated with a glutamate-dependent acid-resistance mechanism, was purified from Lactococcus lactis subsp. lactis by a three-step procedure. The specific activity was increased about 114-fold with a yield of 16%. The N-terminal amino acid sequence of the enzyme was determined. The gene encoding this enzyme was cloned in Escherichia coli, and its nucleotide sequence was determined. The deduced amino acid sequence suggests that the enzyme is produced as a mature form (466 amino acid residues), not as a precursor protein. The subunit molecular mass of L. lactis glutamate decarboxylase was calculated to be 53 926 Da. The enzyme was maximally active at pH 4.7 and reacted only with L-glutamate among 20 alpha-amino acids. The apparent Km value was calculated to be 0.51 mM. The activity was stable at acidic pH values; there was no activity in the neutral pH range. At pH 4.1 the enzyme activity was retained at temperatures up to 70 degrees C in 10 min incubations. L. lactis glutamate decarboxylase behaved as a single protein when the enzyme was purified. A single band corresponding to the glutamate decarboxylase gene was detected on Southern blot analysis. These data suggest that there is one glutamate decarboxylase gene in L. lactis.


Microbiology and Immunology | 1985

Induction of interferon and activation of NK cells and macrophages in mice by oral administration of Ge-132, an organic germanium compound

Hisashi Aso; Fujio Suzuki; Takahiro Yamaguchi; Yoshiro Hayashi; Takusaburo Ebina; Naoko Ishida

After oral administration of an organic germanium compound, Ge‐132 (300 mg/kg), a significant level of interferon (IFN) activity was detected in the sera of mice at 20 hr and it reached a maximum of 320 U/ml at 24 hr. This IFN activity was lost after heat‐ or acid‐treatment, suggesting that the induced IFN is of ‐nature. The molecular weight of this IFN was estimated to be 50,000 daltons by gel filtration. The NK activity of spleen cells was increased 24 hr after the oral administration of Ge‐132, and cytotoxic macrophages were induced in the peritoneal cavity by 48 hr. In the mice receiving an intraperitoneal (ip) injection of trypan blue or carrageenan 2 days before oral administration of Ge‐132, neither induction of IFN nor augmentation of NK activity occurred, and X‐ray irradiation of mice also rendered the mice incapable of producing IFN, all indicating that both macrophages and lymphocytes are required for this IFN induction. Both NK and cytotoxic macrophages appeared 18 hr after ip administration of the induced IFN with a titer as low as 20 U/ml. These facts suggest that both the augmentation of NK activity and activation of macrophages in mice after oral administration of Ge‐132 are mediated by the induced IFN.


Infection and Immunity | 2012

Immunobiotic Lactobacillus jensenii Elicits anti-inflammatory activity in porcine intestinal epithelial cells by modulating negative regulators of the toll-like receptor signaling pathway

Tomoyuki Shimazu; Julio Villena; Masanori Tohno; Hitomi Fujie; Shoichi Hosoya; Takeshi Shimosato; Hisashi Aso; Yoshihito Suda; Yasushi Kawai; Tadao Saito; Seiya Makino; Shuji Ikegami; Hiroyuki Itoh; Haruki Kitazawa

ABSTRACT The effect of Lactobacillus jensenii TL2937 on the inflammatory immune response triggered by enterotoxigenic Escherichia coli (ETEC) and lipopolysaccharide (LPS) in a porcine intestinal epitheliocyte cell line (PIE cells) was evaluated. Challenges with ETEC or LPS elicited Toll-like receptor 4 (TLR4)-mediated inflammatory responses in cultured PIE cells, indicating that our cell line may be useful for studying inflammation in the guts of weaning piglets. In addition, we demonstrated that L. jensenii TL2937 attenuated the expression of proinflammatory cytokines and chemokines caused by ETEC or LPS challenge by downregulating TLR4-dependent nuclear factorκB (NF-κB) and mitogen-activated protein kinase (MAPK) activation. Furthermore, we demonstrated that L. jensenii TL2937 stimulation of PIE cells upregulated three negative regulators of TLRs: A20, Bcl-3, and MKP-1, deepening the understanding of an immunobiotic mechanism of action. L. jensenii TL2937-mediated induction of negative regulators of TLRs would have a substantial physiological impact on homeostasis in PIE cells, because excessive TLR inflammatory signaling would be downregulated. These results indicated that PIE cells can be used to study the mechanisms involved in the protective activity of immunobiotics against intestinal inflammatory damage and may provide useful information for the development of new immunologically functional feeds that help to prevent inflammatory intestinal disorders, including weaning-associated intestinal inflammation.


Journal of Dairy Research | 2002

In vitro differentiation of a cloned bovine mammary epithelial cell.

Michael T. Rose; Hisashi Aso; Shinichi Yonekura; Tokushi Komatsu; Akihiko Hagino; Kyouhei Ozutsumi; Yoshiaki Obara

The aim of the study was to establish in vitro a bovine mammary epithelial cell (MEC) clone, able to respond to mitogenic growth factors and to lactogenic hormones. Mammary tissue from a 200-d pregnant Holstein cow was used as a source of MEC, from which a clone was established through a process of limiting dilution. When plated on plastic, the cells assumed a monolayer, cobblestone, epithelial-like morphology, with close contact between cells. Inclusion of IGF-1 and EGF in the media significantly increased the number of cells 5 d after plating. All cells stained strongly for cytokeratin and moderately for vimentin at young and old passage stages, indicating the epithelial nature of this cell clone. When the cells were plated at a high density on a thin layer of a commercial extracellular matrix preparation (Matrigel), lobular, alveoli-like structures developed within approximately 5 d, with a clearly visible lumen. When cells were plated onto Matrigel in differentiation media (containing lactogenic hormones), detectable quantities of alpha-casein were present in the media and particularly on the lumen side of the structures. Omission of one of the lactogenic hormones (insulin, prolactin or hydrocortisone) reduced alpha-casein release to the limit of detection of the assay used. Lactoferrin was also produced when the cells were plated on Matrigel, again principally on the lumen side of the lobules, though this was independent of the lactogenic hormones. By passage 40, the cells had senesced, and it was not possible to induce alpha-casein or lactoferrin production. This study notes the establishment of a functional bovine mammary epithelial cell clone, which is responsive to mitogenic and lactogenic hormones and an extracellular matrix.


Histochemistry and Cell Biology | 2000

Sequence of IGF-I, IGF-II, and HGF expression in regenerating skeletal muscle

Shinichiro Hayashi; Hisashi Aso; Kouichi Watanabe; Hidetoshi Nara; Michael T. Rose; Shyuichi Ohwada; Takahiro Yamaguchi

Various cytokines are thought to play a role in muscle regeneration, however, the interaction and mechanisms of action of these cytokines remains largely unknown. In this study, we investigated the role of HGF, IGF-I, and IGF-II during myogenesis using the regeneration model of skeletal muscle as well as myoblast culture. RT-PCR analysis revealed that HGF and IGF-I expressions were markedly upregulated, in regenerating muscle. In contrast, there was no significant difference in IGF-II expression between normal and regenerating muscle. Immunohistochemical analysis demonstrated that HGF was expressed mostly by myocytes during the early stages of muscle regeneration. Additionally, HGF inhibited the formation of myotubes by myoblasts, but promoted cellular proliferation. Otherwise, IGF-I and IGF-II were expressed by myocytes through the early to middle stages of muscle regeneration. The addition of HGF to myoblast growing in vitro significantly increased the number of cells. These findings indicate that these three cytokines have pleiotropic effects in regenerating skeletal muscle.


Clinical and Vaccine Immunology | 2012

Immunobiotic Lactobacillus jensenii Modulates the Toll-Like Receptor 4-Induced Inflammatory Response via Negative Regulation in Porcine Antigen-Presenting Cells

Julio Villena; Rie Suzuki; Hitomi Fujie; Eriko Chiba; Takuya Takahashi; Yohsuke Tomosada; Tomoyuki Shimazu; Hisashi Aso; Shyuichi Ohwada; Yoshihito Suda; Shuji Ikegami; Hiroyuki Itoh; Susana Alvarez; Tadao Saito; Haruki Kitazawa

ABSTRACT Previously, we demonstrated that Lactobacillus jensenii TL2937 attenuates the inflammatory response triggered by activation of Toll-like receptor 4 (TLR-4) in porcine intestinal epithelial cells. In view of the critical importance of antigen-presenting cell (APC) polarization in immunoregulation, the objective of the present study was to examine the effect of strain TL2937 on the activation patterns of APCs from swine Peyers patches (PPs). We demonstrated that direct exposure of porcine APCs to L. jensenii in the absence of inflammatory signals increased expression of interleukin-10 (IL-10) and transforming growth factor β in CD172a+ APCs and caused them to display tolerogenic properties. In addition, pretreatment of CD172a+ APCs with L. jensenii resulted in differential modulation of the production of pro- and anti-inflammatory cytokines in response to TLR4 activation. The immunomodulatory effect of strain TL2937 was not related to a downregulation of TLR4 but was related to an upregulation of the expression of three negative regulators of TLRs: single immunoglobulin IL-1-related receptor (SIGIRR), A20, and interleukin-1 receptor-associated kinase M (IRAK-M). Our results also indicated that TLR2 has an important role in the anti-inflammatory activity of L. jensenii TL2937, since anti-TLR2 antibodies blocked the upregulation of SIGIRR and IRAK-M in CD172a+ APCs and the production of IL-10 in response to TLR4 activation. We performed, for the first time, a precise functional characterization of porcine APCs from PPs, and we demonstrated that CD172a+ cells were tolerogenic. Our findings demonstrate that adherent cells and isolated CD172a+ cells harvested from swine PPs were useful for in vitro study of the inflammatory responses in the porcine gut and the immunomodulatory effects of immunobiotic microorganisms.


Endocrinology | 2010

Peripheral Serotonin Enhances Lipid Metabolism by Accelerating Bile Acid Turnover

Hitoshi Watanabe; Daisuke Akasaka; Hideki Ogasawara; Kan Sato; Masato Miyake; Kazuki Saito; Yu Takahashi; Takashi Kanaya; Ikuro Takakura; Tetsuya Hondo; Guozheng Chao; Michael T. Rose; Shyuichi Ohwada; Kouichi Watanabe; Takahiro Yamaguchi; Hisashi Aso

Serotonin is synthesized by two distinct tryptophan hydroxylases, one in the brain and one in the periphery. The latter is known to be unable to cross the blood-brain barrier. These two serotonin systems have apparently independent functions, although the functions of peripheral serotonin have yet to be fully elucidated. In this study, we have investigated the physiological effect of peripheral serotonin on the concentrations of metabolites in the circulation and in the liver. After fasting, mice were ip injected with 1 mg serotonin. The plasma glucose concentration was significantly elevated between 60 and 270 min after the injection. In contrast, plasma triglyceride, cholesterol, and nonesterified fatty acid concentrations were decreased. The hepatic glycogen synthesis and concentrations were significantly higher at 240 min. At the same time, the hepatic triglyceride content was significantly lower than the basal levels noted before the serotonin injection, whereas the hepatic cholesterol content was significantly higher by 60 min after the injection. Furthermore, serotonin stimulated the contraction of the gallbladder and the excretion of bile. After the serotonin injection, there was a significant induction of apical sodium-dependent bile acid transporter expression, resulting in a decrease in the concentration of bile acids in the feces. Additionally, data are presented to show that the functions of serotonin are mediated through diverse serotonin receptor subtypes. These data indicate that peripheral serotonin accelerates the metabolism of lipid by increasing the concentration of bile acids in circulation.


PLOS ONE | 2013

Immunoregulatory Effect of Bifidobacteria Strains in Porcine Intestinal Epithelial Cells through Modulation of Ubiquitin-Editing Enzyme A20 Expression

Yohsuke Tomosada; Julio Villena; Kozue Murata; Eriko Chiba; Tomoyuki Shimazu; Hisashi Aso; Noriyuki Iwabuchi; Jin-zhong Xiao; Tadao Saito; Haruki Kitazawa

Background We previously showed that evaluation of anti-inflammatory activities of lactic acid bacteria in porcine intestinal epithelial (PIE) cells is useful for selecting potentially immunobiotic strains. Objective The aims of the present study were: i) to select potentially immunomodulatory bifidobacteria that beneficially modulate the Toll-like receptor (TLR)-4-triggered inflammatory response in PIE cells and; ii) to gain insight into the molecular mechanisms involved in the anti-inflammatory effect of immunobiotics by evaluating the role of TLR2 and TLR negative regulators in the modulation of proinflammatory cytokine production and activation of mitogen-activated protein kinase (MAPK) and nuclear factor-κB (NF-κB) pathways in PIE cells. Results Bifidobacteria longum BB536 and B. breve M-16V strains significantly downregulated levels of interleukin (IL)-8, monocyte chemotactic protein (MCP)-1 and IL-6 in PIE cells challenged with heat-killed enterotoxigenic Escherichia coli. Moreover, BB536 and M-16V strains attenuated the proinflammatory response by modulating the NF-κB and MAPK pathways. In addition, our findings provide evidence for a key role for the ubiquitin-editing enzyme A20 in the anti-inflammatory effect of immunobiotic bifidobacteria in PIE cells. Conclusions We show new data regarding the mechanism involved in the anti-inflammatory effect of immunobiotics. Several strains with immunoregulatory capabilities used a common mechanism to induce tolerance in PIE cells. Immunoregulatory strains interacted with TLR2, upregulated the expression of A20 in PIE cells, and beneficially modulated the subsequent TLR4 activation by reducing the activation of MAPK and NF-κB pathways and the production of proinflammatory cytokines. We also show that the combination of TLR2 activation and A20 induction can be used as biomarkers to screen and select potential immunoregulatory bifidobacteria strains.


Current Opinion in Lipidology | 2011

Role of peripheral serotonin in glucose and lipid metabolism.

Hitoshi Watanabe; Michael T. Rose; Hisashi Aso

Purpose of review Two independent serotonin systems exist, one in the brain and the other in the periphery. Serotonin is a well known monoaminergic neurotransmitter in the central nervous system and it is known to regulate feeding behavior, meal size, and body weight. On the other hand, there is much less evidence for the role of serotonin as a gastrointestinal hormone, particularly with respect to its effects on glucose and lipid metabolism. This review summarizes our current understanding of the role of peripheral serotonin on glucose and lipid metabolism and the implications of this for further research. Recent findings The enterochromaffin cells of the gastrointestinal tract produce peripheral serotonin postprandially. In mice, it induces a decrease in the concentration of circulating lipids as well as hyperglycemia and hyperinsulinemia through its action on several serotonin receptors. Further, serotonin metabolites act as endogenous agonists for peroxisome proliferator-activated receptor γ and serotonin accelerates adipocyte differentiation via serotonin receptor 2A and 2C. Studies of serotonin are likely to provide new insights into the field of lipid accumulation and metabolism. Summary Recent studies show new physiological functions of peripheral serotonin, linked to glucose and lipid metabolism. Peripheral serotonin may serve as an attractive new therapeutic target for the treatment of metabolic disorders in the near future.

Collaboration


Dive into the Hisashi Aso's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Julio Villena

National Scientific and Technical Research Council

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge