Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Hisashi Miyamori is active.

Publication


Featured researches published by Hisashi Miyamori.


Journal of Biological Chemistry | 2003

Cleavage of Syndecan-1 by Membrane Type Matrix Metalloproteinase-1 Stimulates Cell Migration

Kazuhira Endo; Takahisa Takino; Hisashi Miyamori; Hidenori Kinsen; Tomokazu Yoshizaki; Mitsuru Furukawa; Hiroshi Sato

The transmembrane heparan sulfate proteoglycan syndecan-1 was identified from a human placenta cDNA library by the expression cloning method as a gene product that interacts with membrane type matrix metalloproteinase-1 (MT1-MMP). Co-expression of MT1-MMP with syndecan-1 in HEK293T cells promoted syndecan-1 shedding, and concentration of cell-associated syndecan-1 was reduced. Treatment of cells with MMP inhibitor BB-94 or tissue inhibitor of MMP (TIMP)-2 but not TIMP-1 interfered with the syndecan-1 shedding promoted by MT1-MMP expression. In contrast, syndecan-1 shedding induced by 12-O-tetradecanoylphorbol-13-acetate treatment was inhibited by BB-94 but not by either TIMP-1 or TIMP-2. Shedding of syndecan-1 was also induced by MT3-MMP but not by other MT-MMPs. Recombinant syndecan-1 core protein was shown to be cleaved by recombinant MT1-MMP or MT3-MMP preferentially at the Gly245-Leu246 peptide bond. HT1080 fibrosarcoma cells stably transfected with the syndecan-1 cDNA (HT1080/SDC), which express endogenous MT1-MMP, spontaneously shed syndecan-1. Migration of HT1080/SDC cells on collagen-coated dishes was significantly slower than that of control HT1080 cells. Treatment of HT1080/SDC cells with BB-94 or TIMP-2 induced accumulation of syndecan-1 on the cell surface, concomitant with further retardation of cell migration. Substitution of Gly245 of syndecan-1 with Leu significantly reduced shedding from HT1080/SDC cells and cell migration. These results suggest that the shedding of syndecan-1 promoted by MT1-MMP through the preferential cleavage of Gly245-Leu246 peptide bond stimulates cell migration.


Cancer Science | 2005

Roles of membrane-type matrix metalloproteinase-1 in tumor invasion and metastasis.

Hiroshi Sato; Takahisa Takino; Hisashi Miyamori

Degradation of extracellular matrix (ECM) is one of the first steps in tumor invasion and metastasis. Matrix metalloproteinases (MMP) have been strongly implicated in this step. Membrane‐type MMP‐1 (MT1‐MMP) was first identified as an activator of proMMP‐2 expressed on the surface of tumor cells and later, not only ECM macromolecules but also various biologically important molecules, were shown to serve as substrates for MT1‐MMP. Accumulated lines of evidence have demonstrated that MT1‐MMP expression level is closely associated with invasiveness and malignancy of tumors, suggesting that MT1‐MMP is one of the most critical factors for tumor invasion and metastasis. Despite enthusiasm for MMP inhibitors, phase III trials have not yet demonstrated significance in overall survival and side‐effects remain an issue. An understanding of the functions of MT1‐MMP could supply clues for developing novel therapeutic strategies targeting MT1‐MMP. (Cancer Sci 2005; 96: 212 –217)


Cancer Research | 2004

The Phosphorylation of EphB2 Receptor Regulates Migration and Invasion of Human Glioma Cells

Mitsutoshi Nakada; Jared A. Niska; Hisashi Miyamori; Wendy S. McDonough; Jie Wu; Hiroshi Sato; Michael E. Berens

Eph receptor tyrosine kinases and their ligands, ephrins, mediate neurodevelopmental processes such as boundary formation, axon guidance, vasculogenesis, and cell migration. We determined the expression profiles of the Eph family members in five glioma cell lines under migrating and nonmigrating conditions. EphB2 mRNA was overexpressed in all five during migration (1.2-2.8-fold). We found abundant EphB2 protein as well as strong phosphorylation of EphB2 in migrating U87 cells. Confocal imaging showed EphB2 localized in lamellipodia of motile U87 cells. Treatment with ephrin-B1/Fc chimera stimulated migration and invasion of U87, whereas treatment with a blocking EphB2 antibody significantly inhibited migration and invasion. Forced expression of EphB2 in U251 cells stimulated cell migration and invasion and diminished adhesion concomitant with the tyrosine phosphorylation of EphB2. U251 stably transfected with EphB2 showed more scattered and more pronounced invasive growth in an ex vivo rat brain slice. In human brain tumor specimens, EphB2 expression was higher in glioblastomas than in low-grade astrocytomas or normal brain; patterns of phosphorylated EphB2 matched the expression levels. Laser capture microdissection of invading glioblastoma cells revealed elevated EphB2 mRNA (1.5-3.5-fold) in 7 of 7 biopsy specimens. Immunohistochemistry demonstrated EphB2 localization primarily in glioblastoma cells (56 of 62 cases) and not in normal brain. This is the first demonstration that migrating glioblastoma cells overexpress EphB2 in vitro and in vivo; glioma migration and invasion are promoted by activation of EphB2 or inhibited by blocking EphB2. Dysregulation of EphB2 expression or function may underlie glioma invasion.


Cancer Research | 2004

Membrane Type 1 Matrix Metalloproteinase Regulates Collagen-Dependent Mitogen-Activated Protein/Extracellular Signal-Related Kinase Activation and Cell Migration

Takahisa Takino; Hisashi Miyamori; Yumi Watanabe; Katsuji Yoshioka; Motoharu Seiki; Hiroshi Sato

Mitogen-activated protein kinase-extracellular signal-related kinase (ERK) kinase 1 (MEK1)/ERK signaling has been implicated in the regulation of tumor cell invasion and metastasis. Migration of HT1080 cells on type I collagen was suppressed by the matrix metalloproteinase (MMP) inhibitors BB94 and tissue inhibitor of metalloproteinase (TIMP)-2 but not by TIMP-1. TIMP-2-specific inhibition suggests that membrane type 1 MMP (MT1-MMP) is likely involved in this process. Activation of ERK was induced in HT1080 cells adhered on dishes coated with type I collagen, and this was inhibited by BB94. MMP-2 processing in HT1080 cells, which also was stimulated by cultivation on type I collagen, was inhibited by MEK inhibitor PD98059. Expression of a constitutively active form of MEK1 promoted MMP-2 processing concomitant with the increase of MT1-MMP levels, suggesting that MT1-MMP is regulated by MEK/ERK signaling. In addition, expression of the hemopexin-like domain of MT1-MMP in HT1080 cells interfered with MMP-2 processing, ERK activation, and cell migration, implying that the enzymatic activity of MT1-MMP is involved in collagen-induced ERK activation, which results in enhanced cell migration. Thus, adhesion of HT1080 cells to type I collagen induces MT1-MMP-dependent ERK activation, which in turn causes an increase in MT1-MMP levels and subsequent cell migration.


Oncogene | 2000

Transformation of Madin-Darby canine kidney (MDCK) epithelial cells by Epstein-Barr virus latent membrane protein 1 (LMP1) induces expression of Ets1 and invasive growth

Kwang-Rok Kim; Tomokazu Yoshizaki; Hisashi Miyamori; Kazuki Hasegawa; Toshiyuki Horikawa; Mitsuru Furukawa; Shizuko Harada; Motoharu Seiki; Hiroshi Sato

The Epstein-Barr virus (EBV)-encoded latent membrane protein 1 (LMP1) has a significant role in initiating EBV-associated lymphoproliferative disease and EBV-related malignancies. In view of clinical features related to the type of EBV latency, LMP1 may influence invasiveness of EBV associated tumors categorized as types II and III as represented on nasopharyngeal carcinoma (NPC). To screen for genes associated with invasion of epithelial cells transformed by LMP1, Madin-Darby canine kidney (MDCK) epithelial cells were transformed by LMP1. Stable transfection of a LMP1 gene into MDCK cells induced morphological change from cobblestone to a long spindle-shape, reduced cell-cell adhesion and caused high cell motility. Parental MDCK cells, which form spherical cysts in three-dimensional collagen gel matrix, form branching tubules following exposure to hepatocyte growth factor (HGF). MDCK cells transformed by LMP1 showed invasive growth to form branching tubules into collagen gel without HGF-treatment. mRNA differential display and Northern hybridization identified plasminogen activator inhibitor-1 (PAI-1), urokinase type plasminogen activator (uPA) and ets1 as genes upregulated during transformation by LMP1. Expression of a dominant negative type of Ets1 in LMP1-transformed cells downregulated uPA expression and cell motility. Deletion of LMP1 cytoplasmic carboxy-terminal activating region 1 (CTAR1) domain abolished transformation, but a deletion mutant lacking CTAR2 domain still retained transforming and uPA-inducing ability. Expression of Ets1 was immunolocalized in tumor cells of NPC tissue which frequently express LMP1. Taken together, it is suggested that LMP1 induces expression of Ets1 which may contribute to invasion of NPC by stimulating cell motility and uPA expression.


Cancer Research | 2004

Cleavage of lumican by membrane-type matrix metalloproteinase-1 abrogates this proteoglycan-mediated suppression of tumor cell colony formation in soft agar.

Yingyi Li; Takanori Aoki; Yuya Mori; Munirah Ahmad; Hisashi Miyamori; Takahisa Takino; Hiroshi Sato

The small leucine-rich proteoglycan lumican was identified from a human placenta cDNA library by the expression cloning method as a gene product that interacts with membrane-type matrix metalloproteinase-1 (MT1-MMP). Coexpression of MT1-MMP with lumican in HEK293T cells reduced the concentration of lumican secreted into culture medium, and this reduction was abolished by addition of the MMP inhibitor BB94. Lumican protein from bovine cornea and recombinant lumican core protein fused to glutathione S-transferase was shown to be cleaved at multiple sites by recombinant MT1-MMP. Transient expression of lumican in HEK293 cells induced expression of tumor suppressor gene product p21/Waf-1, which was abrogated by the coexpression of MT1-MMP concomitant with a reduction in lumican concentration in culture medium. Stable expression of lumican in HeLa cells induced expression of p21 and reduction of colony formation in soft agar, which were both abolished by the expression of MT1-MMP. HT1080 fibrosarcoma cells stably transfected with the lumican cDNA (HT1080/Lum), which express endogenous MT1-MMP, secreted moderate levels of lumican; however, treatment of HT1080/Lum cells with BB94 resulted in accumulation of lumican in culture medium. The expression levels of p21 in HT1080/Lum were proportional to the concentration of secreted lumican and showed reverse corelation with colony formation in soft agar. These results suggest that MT1-MMP abrogates lumican-mediated suppression of tumor cell colony formation in soft agar by degrading this proteoglycan, which down-regulates it through the induction of p21.


Biochemical and Biophysical Research Communications | 2003

Tetraspanin CD63 promotes targeting and lysosomal proteolysis of membrane-type 1 matrix metalloproteinase.

Takahisa Takino; Hisashi Miyamori; Noriko Kawaguchi; Takamasa Uekita; Motoharu Seiki; Hiroshi Sato

Membrane-type 1 matrix metalloproteinase (MT1-MMP) is known to be internalized from cell surface, however, the fate of internalized MT1-MMP is still unknown. Here we demonstrate that at least a part of internalized MT1-MMP is targeted for lysosomal proteolysis. Treatment with an inhibitor of lysosomal proteinases chloroquine suppressed degradation of internalized MT1-MMP and induced accumulation of MT1-MMP in CD63-positive lysosomes. Ectopic expression of CD63 accelerated degradation of MT1-MMP, which was blocked by chloroquine. MT1-MMP, and CD63 were shown to form a complex through hemopexin-like domain of MT1-MMP and N-terminal region of CD63, and thus accelerated degradation of MT1-MMP was not observed with mutants lacking these domains. CD63 mutant lacking lysosomal targeting motif was unable to promote MT1-MMP degradation. These results suggest that CD63 regulates MT1-MMP by targeting to lysosomes.


Acta Neuropathologica | 2005

Human glioblastomas overexpress ADAMTS-5 that degrades brevican

Mitsutoshi Nakada; Hisashi Miyamori; Daisuke Kita; Tomoya Takahashi; Junkoh Yamashita; Hiroshi Sato; Ryu Miura; Yu Yamaguchi; Yasunori Okada

Selective cleavage of the Glu395-Ser396 bond of brevican, one of the major proteoglycans in adult brain tissues, is thought to be important for glioma cell invasion. Our previous biochemical study demonstrated that ADAMTS-4, a member of the ADAMTS (a disintegrin and metalloproteinase with thrombospondin motifs) family, has such an activity. In the present study, we examined brevican-degrading activities of ADAMTS-1, -4 and -5 at the cellular level, and their expression and localization in human glioma tissues. In 293T transfectants expressing ADAMTS-4 or ADAMTS-5, brevican was cleaved into two major fragments in an identical pattern, but no such degradation was observed with ADAMTS-1 transfectants. When the expression levels of these ADAMTS species were examined by real-time quantitative PCR, only ADAMTS-5 was found to be overexpressed in glioblastoma tissues compared to control normal brain tissues (P <0.05). In situ hybridization and immunohistochemistry demonstrated that ADAMTS-5 is expressed predominantly in glioblastoma cells. Forced expression of ADAMTS-5 in glioma cell lines stimulated cell invasion. These results demonstrate for the first time that ADAMTS-5 is capable of degrading brevican and is overexpressed in glioblastoma cells, and suggest that ADAMTS-5 may play a role in glioma cell invasion through the cleavage of brevican.


Journal of Biological Chemistry | 2005

JSAP1/JIP3 Cooperates with Focal Adhesion Kinase to Regulate c-Jun N-terminal Kinase and Cell Migration

Takahisa Takino; Mitsutoshi Nakada; Hisashi Miyamori; Yumi Watanabe; Tokiharu Sato; Davaakhuu Gantulga; Katsuji Yoshioka; Kenneth M. Yamada; Hiroshi Sato

c-Jun N-terminal kinase (JNK)/stress-activated protein kinase-associated protein 1 (JSAP1) (also termed JNK-interacting protein 3; JIP3) is a member of a family of scaffold factors for the mitogen-activated protein kinase (MAPK) cascades, and it also forms a complex with focal adhesion kinase (FAK). Here we demonstrate that JSAP1 serves as a cooperative scaffold for activation of JNK and regulation of cell migration in response to fibronectin (FN) stimulation. JSAP1 mediated an association between FAK and JNK, which was induced by either co-expression of Src or attachment of cells to FN. Complex formation of FAK with JSAP1 and p130 Crk-associated substrate (p130Cas) resulted in augmentation of FAK activity and phosphorylation of both JSAP1 and p130Cas, which required p130Cas hyperphosphorylation and was abolished by inhibition of Src. JNK activation by FN was enhanced by JSAP1, which was suppressed by disrupting the FAK/p130Cas pathway by expression of a dominant-negative form of p130Cas or by inhibiting Src. We also documented the co-localization of JSAP1 with JNK and phosphorylated FAK at the leading edge and stimulation of cell migration by JSAP1 expression, which depended on its JNK binding domain and was suppressed by inhibition of JNK. The level of JSAP1 mRNA correlated with advanced malignancy in brain tumors, unlike other JIPs. We propose that the JSAP1·FAK complex functions cooperatively as a scaffold for the JNK signaling pathway and regulator of cell migration on FN, and we suggest that JSAP1 is also associated with malignancy in brain tumors.


Journal of Cell Science | 2003

Tyrosine phosphorylation of the CrkII adaptor protein modulates cell migration

Takahisa Takino; Masahito Tamura; Hisashi Miyamori; Masaru Araki; Kazue Matsumoto; Hiroshi Sato; Kenneth M. Yamada

CrkII belongs to a family of adaptor proteins that become tyrosine phosphorylated after various stimuli. We examined the role of CrkII tyrosine phosphorylation in fibronectin-induced cell migration. Overexpression of CrkII inhibited dephosphorylation of focal adhesion components such as p130 Crk-associated substrate (p130cas) and paxillin by protein tyrosine phosphatase 1B (PTP1B). Tyrosine-phosphorylated CrkII was dephosphorylated by PTP1B both in vitro and in vivo, showing for the first time that PTP1B directly dephosphorylates CrkII. A CrkII mutant in which tyrosine residue 221 was substituted by phenylalanine (CrkII-Y221F) could not be tyrosine phosphorylated, and it showed significantly increased binding to p130cas and paxillin. Enhanced binding of CrkII to p130cas has been reported to promote cell migration. Nonphosphorylated CrkII-Y221F promoted HT1080 cell migration on fibronectin, whereas wild-type CrkII did not at moderate expression levels. Moreover, co-expression of CrkII and PTP1B promoted HT1080 cell migration on fibronectin and retained tyrosine phosphorylation and binding of p130cas to CrkII, whereas paxillin tyrosine phosphorylation was reduced. These findings support the concepts that CrkII binding activity is regulated by tyrosine kinases and phosphatases, and that tyrosine phosphorylation of CrkII can downmodulate cell migration mediated by the focal adhesion kinase/p130cas pathway.

Collaboration


Dive into the Hisashi Miyamori's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kenneth M. Yamada

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge