Hisham Qosa
University of Louisiana at Monroe
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Hisham Qosa.
ACS Chemical Neuroscience | 2013
Alaa H. Abuznait; Hisham Qosa; Belnaser A. Busnena; Khalid A. El Sayed; Amal Kaddoumi
Oleocanthal, a phenolic component of extra-virgin olive oil, has been recently linked to reduced risk of Alzheimers disease (AD), a neurodegenerative disease that is characterized by accumulation of β-amyloid (Aβ) and tau proteins in the brain. However, the mechanism by which oleocanthal exerts its neuroprotective effect is still incompletely understood. Here, we provide in vitro and in vivo evidence for the potential of oleocanthal to enhance Aβ clearance from the brain via up-regulation of P-glycoprotein (P-gp) and LDL lipoprotein receptor related protein-1 (LRP1), major Aβ transport proteins, at the blood-brain barrier (BBB). Results from in vitro and in vivo studies demonstrated similar and consistent pattern of oleocanthal in controlling Aβ levels. In cultured mice brain endothelial cells, oleocanthal treatment increased P-gp and LRP1 expression and activity. Brain efflux index (BEI%) studies of (125)I-Aβ40 showed that administration of oleocanthal extracted from extra-virgin olive oil to C57BL/6 wild-type mice enhanced (125)I-Aβ40 clearance from the brain and increased the BEI% from 62.0 ± 3.0% for control mice to 79.9 ± 1.6% for oleocanthal treated mice. Increased P-gp and LRP1 expression in the brain microvessels and inhibition studies confirmed the role of up-regulation of these proteins in enhancing (125)I-Aβ40 clearance after oleocanthal treatment. Furthermore, our results demonstrated significant increase in (125)I-Aβ40 degradation as a result of the up-regulation of Aβ degrading enzymes following oleocanthal treatment. In conclusion, these findings provide experimental support that potential reduced risk of AD associated with extra-virgin olive oil could be mediated by enhancement of Aβ clearance from the brain.
Journal of Alzheimer's Disease | 2012
Hisham Qosa; Alaa H. Abuznait; Ronald A. Hill; Amal Kaddoumi
Rifampicin and caffeine are widely used drugs with reported protective effect against Alzheimers disease (AD). However, the mechanism underlying this effect is incompletely understood. In this study, we have hypothesized that enhanced amyloid-β (Aβ) clearance from the brain across the blood-brain barrier (BBB) of wild-type mice treated with rifampicin or caffeine is caused by both drugs potential to upregulate low-density lipoprotein receptor related protein-1 (LRP1) and/or P-glycoprotein (P-gp) at the BBB. Expression studies of LRP1 and P-gp in brain endothelial cells and isolated mice brain microvessels following treatment with rifampicin or caffeine demonstrated both drugs as P-gp inducers, and only rifampicin as an LRP1 inducer. Also, brain efflux index (BEI%) studies conducted on C57BL/6 mice treated with either drug to study alterations in Aβ clearance demonstrated the BEI% of Aβ in rifampicin (82.4 ± 4.3%) and caffeine (80.4 ± 4.8%) treated mice were significantly higher than those of control mice (62.4 ± 6.1%, p < 0.01). LRP1 and P-gp inhibition studies confirmed the importance of both proteins to the clearance of Aβ, and that enhanced clearance following drugs treatment was caused by LRP1 and/or P-gp upregulation at the mouse BBB. Furthermore, our results provided evidence for the presence of a yet to be identified transporter/receptor that plays significant role in Aβ clearance and is upregulated by caffeine and rifampicin. In conclusion, our results demonstrated the upregulation of LRP1 and P-gp at the BBB by rifampicin and caffeine enhanced brain Aβ clearance, and this effect could explain, at least in part, the protective effect of rifampicin and caffeine against AD.
ACS Chemical Neuroscience | 2015
Hisham Qosa; Yazan S. Batarseh; Mohamed M. Mohyeldin; Khalid A. El Sayed; Jeffrey N. Keller; Amal Kaddoumi
Numerous clinical and preclinical studies have suggested several health promoting effects for the dietary consumption of extra-virgin olive oil (EVOO) that could protect and decrease the risk of developing Alzheimer’s disease (AD). Moreover, recent studies have linked this protective effect to oleocanthal, a phenolic secoiridoid component of EVOO. This protective effect of oleocanthal against AD has been related to its ability to prevent amyloid-β (Aβ) and tau aggregation in vitro, and enhance Aβ clearance from the brains of wild type mice in vivo; however, its effect in a mouse model of AD is not known. In the current study, we investigated the effect of oleocanthal on pathological hallmarks of AD in TgSwDI, an animal model of AD. Mice treatment for 4 weeks with oleocanthal significantly decreased amyloid load in the hippocampal parenchyma and microvessels. This reduction was associated with enhanced cerebral clearance of Aβ across the blood-brain barrier (BBB). Further mechanistic studies demonstrated oleocanthal to increase the expression of important amyloid clearance proteins at the BBB including P-glycoprotein and LRP1, and to activate the ApoE-dependent amyloid clearance pathway in the mice brains. The anti-inflammatory effect of oleocanthal in the brains of these mice was also obvious where it was able to reduce astrocytes activation and IL-1β levels. Finally, we could recapitulate the observed protective effect of oleocanthal in an in vitro human-based model, which could argue against species difference in response to oleocanthal. In conclusion, findings from in vivo and in vitro studies provide further support for the protective effect of oleocanthal against the progression of AD.
Biopharmaceutics & Drug Disposition | 2012
Bilal S. Abuasal; Hisham Qosa; Paul W. Sylvester; Amal Kaddoumi
The aim of this work was to compare the intestinal absorption kinetics and the bioavailability of γ‐tocotrienol (γ‐T3) and α‐tocopherol (α‐Tph) administered separately as oil solutions to rats in vivo. Also, to explain the significant difference in the oral bioavailability of the compounds: (1) the release profiles using the dynamic in vitro lipolysis model, (2) the intestinal permeability and (3) carrier‐mediated uptake by Niemann‐Pick C1‐like 1 (NPC1L1) transporter were examined. Absolute bioavailability studies were conducted after oral administration of γ‐T3 or α‐Tph prepared in corn oil to rats. In situ rat intestinal perfusion with ezetimibe (a NPC1L1 inhibitor) was performed to compare intestinal permeability. The in vitro interaction kinetics with NPC1L1 was examined in NPC1L1 transfected cells. While the in vitro release studies demonstrated a significantly higher release rate of γ‐T3 in the aqueous phase, the oral bioavailability of α‐Tph (36%) was significantly higher than γ‐T3 (9%). Consequent in situ studies revealed significantly higher intestinal permeability for α‐Tph compared with γ‐T3 in rats. Moreover, the NPC1L1 kinetic studies demonstrated higher Vmax and Km values for α‐Tph compared with γ‐T3. Collectively, these results indicate that intestinal permeability is the main contributing factor for the higher bioavailability of α‐Tph. Also, these results emphasize the potentially important role of intestinal permeability in the bioavailability of γ‐T3, suggesting that enhancing its permeability would increase its oral bioavailability. Copyright
Biochimica et Biophysica Acta | 2014
Hisham Qosa; Harry LeVine; Jeffrey N. Keller; Amal Kaddoumi
Senile amyloid plaques are one of the diagnostic hallmarks of Alzheimers disease (AD). However, the severity of clinical symptoms of AD is weakly correlated with the plaque load. AD symptoms severity is reported to be more strongly correlated with the level of soluble amyloid-β (Aβ) assemblies. Formation of soluble Aβ assemblies is stimulated by monomeric Aβ accumulation in the brain, which has been related to its faulty cerebral clearance. Studies tend to focus on the neurotoxicity of specific Aβ species. There are relatively few studies investigating toxic effects of Aβ on the endothelial cells of the blood-brain barrier (BBB). We hypothesized that a soluble Aβ pool more closely resembling the in vivo situation composed of a mixture of Aβ40 monomer and Aβ42 oligomer would exert higher toxicity against hCMEC/D3 cells as an in vitro BBB model than either component alone. We observed that, in addition to a disruptive effect on the endothelial cells integrity due to enhancement of the paracellular permeability of the hCMEC/D3 monolayer, the Aβ mixture significantly decreased monomeric Aβ transport across the cell culture model. Consistent with its effect on Aβ transport, Aβ mixture treatment for 24h resulted in LRP1 down-regulation and RAGE up-regulation in hCMEC/D3 cells. The individual Aβ species separately failed to alter Aβ clearance or the cell-based BBB model integrity. Our study offers, for the first time, evidence that a mixture of soluble Aβ species, at nanomolar concentrations, disrupts endothelial cells integrity and its own transport across an in vitro model of the BBB.
Journal of Nutritional Biochemistry | 2015
Hisham Qosa; Loqman A. Mohamed; Yazan S. Batarseh; Saeed Alqahtani; Baher A. Ibrahim; Harry LeVine; Jeffrey N. Keller; Amal Kaddoumi
Extra-virgin olive oil (EVOO) is one of the main elements of Mediterranean diet. Several studies have suggested that EVOO has several health promoting effects that could protect from and decrease the risk of Alzheimers disease (AD). In this study, we investigated the effect of consumption of EVOO-enriched diet on amyloid- and tau-related pathological alterations that are associated with the progression of AD and cerebral amyloid angiopathy (CAA) in TgSwDI mice. Feeding mice with EVOO-enriched diet for 6months, beginning at an age before amyloid-β (Aβ) accumulation starts, has significantly reduced total Aβ and tau brain levels with a significant improvement in mouse cognitive behavior. This reduction in brain Aβ was explained by the enhanced Aβ clearance pathways and reduced brain production of Aβ via modulation of amyloid-β precursor protein processing. On the other hand, although feeding mice with EVOO-enriched diet for 3months, beginning at an age after Aβ accumulation starts, showed improved clearance across the blood-brain barrier and significant reduction in Aβ levels, it did not affect tau levels or improve cognitive functions of TgSwDI mouse. Collectively, results of this study suggest that the long-term consumption of EVOO-containing diet starting at early age provides a protective effect against AD and its related disorder CAA.
Food and Chemical Toxicology | 2011
Alaa H. Abuznait; Hisham Qosa; Nicholas D. O’Connell; Jessica Akbarian-Tefaghi; Paul W. Sylvester; Khalid A. El Sayed; Amal Kaddoumi
The effect of bioactive plant natural products on the expression and functional activity of P-glycoprotein (P-gp) is poorly understood. Interactions of bioactive plant-based food and dietary supplements with P-gp can cause significant alteration of pharmacokinetic properties of P-gp substrate drugs when used in combination. This can augment toxicity and/or interfere with the drugs therapeutic outcomes. This study investigated the effects of diverse commonly used plant natural products on the expression and activity of P-gp in human adenocarcinoma cells (LS-180). These natural products included the tobacco cembranoid (1S,2E,4R,6R,7E,11E)-2,7,11-cembratriene-4,6-diol (cembratriene), the palm oil-derived γ-tocotrienol, the extra-virgin olive oil-derived secoiridoid oleocanthal, and the triterpene acid asiatic acid derived from Melaleuca ericifolia and abundant in several other common plant dietary supplements. Treatment with 25μM of cembratriene, oleocanthal, γ-tocotrienol, or asiatic acid showed 2.3-3.0-fold increase in P-gp expression as demonstrated by Western blotting. These results were consistent with those obtained by quantitative analysis of fluorescent micrographs for P-gp. Accumulation studies demonstrated 31-38% decrease in rhodamine 123 intracellular levels when LS-180 cells were treated with the investigated compounds as a result of P-gp induction. Bioactive natural products can up-regulate the P-gp expression and functionality, which may induce herb/food-drug interactions when concomitantly used with P-gp substrate drugs.
ACS Chemical Neuroscience | 2015
Loqman A. Mohamed; Hisham Qosa; Amal Kaddoumi
In Alzheimers disease (AD), accumulation of brain amyloid-β (Aβ) depends on imbalance between production and clearance of Aβ. Several pathways for Aβ clearance have been reported including transport across the blood-brain barrier (BBB) and hepatic clearance. The incidence of AD increases with age and failure of Aβ clearance correlates with AD. The cholinesterase inhibitors (ChEIs) donepezil and rivastigmine are used to ease the symptoms of dementia associated with AD. Besides, both drugs have been reported to provide neuroprotective and disease-modifying effects. Here, we investigated the effect of ChEIs on age-related reduced Aβ clearance. Findings from in vitro and in vivo studies demonstrated donepezil and rivastigmine to enhance (125)I-Aβ40 clearance. Also, the increase in brain and hepatic clearance of (125)I-Aβ40 was more pronounced in aged compared to young rats, and was associated with significant reduction in brain Aβ endogenous levels determined by ELISA. Furthermore, the enhanced clearance was concomitant with up-regulation in the expression of Aβ major transport proteins P-glycoprotein and LRP1. Collectively, our findings that donepezil and rivastigmine enhance Aβ clearance across the BBB and liver are novel and introduce an additional mechanism by which both drugs could affect AD pathology. Thus, optimizing their clinical use could help future drug development by providing new drug targets and possible mechanisms involved in AD pathology.
Journal of Alzheimer's Disease | 2016
Hisham Qosa; Loqman A. Mohamed; Sweilem B. Al Rihani; Yazan S. Batarseh; Quoc-Viet Duong; Jeffrey N. Keller; Amal Kaddoumi
The blood-brain barrier (BBB) is a dynamic interface that maintains brain homeostasis and protects it from free entry of chemicals, toxins, and drugs. The barrier function of the BBB is maintained mainly by capillary endothelial cells that physically separate brain from blood. Several neurological diseases, such as Alzheimers disease (AD), are known to disrupt BBB integrity. In this study, a high-throughput screening (HTS) was developed to identify drugs that rectify/protect BBB integrity from vascular amyloid toxicity associated with AD progression. Assessing Lucifer Yellow permeation across in-vitro BBB model composed from mouse brain endothelial cells (bEnd3) grown on 96-well plate inserts was used to screen 1280 compounds of Sigma LOPAC®1280 library for modulators of bEnd3 monolayer integrity. HTS identified 62 compounds as disruptors, and 50 compounds as enhancers of the endothelial barrier integrity. From these 50 enhancers, 7 FDA approved drugs were identified with EC50 values ranging from 0.76-4.56 μM. Of these 7 drugs, 5 were able to protect bEnd3-based BBB model integrity against amyloid toxicity. Furthermore, to test the translational potential to humans, the 7 drugs were tested for their ability to rectify the disruptive effect of Aβ in the human endothelial cell line hCMEC/D3. Only 3 (etodolac, granisetron, and beclomethasone) out of the 5 effective drugs in the bEnd3-based BBB model demonstrated a promising effect to protect the hCMEC/D3-based BBB model integrity. These drugs are compelling candidates for repurposing as therapeutic agents that could rectify dysfunctional BBB associated with AD.
Clinical Pharmacology & Therapeutics | 2016
Hisham Qosa; Loqman A. Mohamed; Saeed Alqahtani; Bilal S. Abuasal; Ronald A. Hill; Amal Kaddoumi
Membrane transport proteins have central physiological function in maintaining cerebral homeostasis. These transporters are expressed in almost all cerebral cells in which they regulate the movement of a wide range of solutes, including endogenous substrates, xenobiotic, and therapeutic drugs. Altered activity/expression of central nervous system (CNS) transporters has been implicated in the onset and progression of multiple neurological diseases. Neurological diseases are heterogeneous diseases that involve complex pathological alterations with only a few treatment options; therefore, there is a great need for the development of novel therapeutic treatments. To that end, transporters have emerged recently to be promising therapeutic targets to halt or slow the course of neurological diseases. The objective of this review is to discuss implications of transporters in neurological diseases and summarize available evidence for targeting transporters as decent therapeutic approach in the treatment of neurological diseases.