Hisila Santacruz-Ortega
Universidad de Sonora
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Hisila Santacruz-Ortega.
Bioresource Technology | 2010
Mario Hiram Uriarte-Montoya; Joe Luis Arias-Moscoso; Maribel Plascencia-Jatomea; Hisila Santacruz-Ortega; Ofelia Rouzaud-Sández; José Luis Cárdenas-López; Enrique Márquez-Ríos; Josafat Marina Ezquerra-Brauer
Collagen-based biomaterials have been widely used due to its binding capabilities. However the properties and potential use of new collagen sources are still under investigation. Fish by-products are an excellent source of collagen. Thus, acid-soluble collagen (ASC) was extracted, and biochemical and physicochemically characterized from one under-utilized specie, jumbo squid (Dosidicus gigas). In addition, commercial chitosan (95-50%)-ASC (5-50%) blend films were successfully prepared by casting, and characterized by infrared spectroscopy (FT-IR) and differential scanning calorimetry (DSC). The molecular masses of the ASC subunits were about 190kDa, 110kDa, and 97kDa, the content of proline and hydroxyproline was 10.9% and 2.8%, respectively. The FT-IR and nuclear magnetic resonance spectra ((1)H NMR) confirmed collagen peptidic crosslinks, and one endothermic peak was found at 119 degrees C. The FT-IR spectrum showed that chitosan and ASC remain linked into the films mainly due to hydrogen bonding. The 85:15 (chitosan:ASC) ratio was selected for its thermal and mechanical analyses. The thermograms of this film indicated the presence of two peaks, one at 87-98 degrees C and the other at 142-182 degrees C. The chitosan:ASC blend produced a transparent and brittle film, with high percentage of elongation at break, and low tensile strength in comparison to chitosan films. D. gigas mantle might be useful as a new source of plasticizer agent in the preparation of biofilms in composites with chitosan.
PLOS ONE | 2015
Luis Miguel López-Martínez; Hisila Santacruz-Ortega; Rosa-Elena Navarro; Rogerio R. Sotelo-Mundo; Gustavo Gonzalez-Aguilar
The benefits of phenolic acids on human health are very often ascribed to their potential to counteract free radicals to provide antioxidant protection. This potential has been attributed to their acidic chemical structure, which possesses hydroxyl groups in different positions. Phenolic acids can interact between themselves and exhibit an additive, antagonistic or synergistic effect. In this paper, we used 1H NMR to analyze the interactions and mechanisms that are present in major phenolic acids found in mango (gallic, protocatechuic, chlorogenic and vanillic acids) and papaya (caffeic, ferulic and p-coumaric acids), and the DPPH radical was used to evaluate the effect of the antioxidant mixtures. The interactions were found to occur via hydrogen bonds between the -OH and -COOH groups. Moreover, the phenolic acids exhibit two types of mechanisms for the neutralization of the DPPH radical. According to the results, these two mechanisms are Hydrogen Atom Transfer (HAT) and Single Electron Transfer (SET). The ability of the phenolic acid to neutralize the DPPH radical decreases in the following order in mango: gallic > chlorogenic > protocatechuic > vanillic. Moreover, within the acids found in papaya, the order was as follows: caffeic > p-coumaric > ferulic.
Journal of Nanomaterials | 2016
Ana Guadalupe Luque-Alcaraz; Mario Onofre Cortez-Rocha; Carlos Arturo Velázquez-Contreras; Ana Lilian Acosta-Silva; Hisila Santacruz-Ortega; Armando Burgos-Hernández; Waldo Argüelles-Monal; Maribel Plascencia-Jatomea
Chitosan nanoparticles (CS) and chitosan/pepper tree (Schinus molle) essential oil (CS-EO) bionanocomposites were synthesized by nanoprecipitation method and the in vitro antifungal activity against Aspergillus parasiticus spores was evaluated. The shape and size were evaluated by scanning electron microscopy (SEM) and dynamic light scattering (DLS). The surface charge was determined by assessing the zeta potential and the inclusion of essential oil in bionanocomposites using Fourier transform infrared spectroscopy (FT-IR). The effect on cell viability of the fungus was evaluated using the XTT technique and morphometric analysis by image processing. SEM and DLS analysis indicated that spherical particles with larger diameters for CS-EO biocomposites were observed. Zeta potential values were higher (+11.1 ± 1.60 mV) for CS nanoparticles. Results suggest a chemical interaction between chitosan and pepper tree essential oil. The highest concentration of CS-EO complex caused a larger (40-50%) decrease in A. parasiticus viability. The inclusion of pepper tree oil in CS nanoparticles is a feasible alternative to obtain antifungal biocomposites, where the activity that each compound presents individually is strengthened.
Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy | 2011
Ana María Mendoza-Wilson; Hisila Santacruz-Ortega; René Renato Balandrán-Quintana
The goal of this research was to determine whether there are differences between the major oxidation products formed during the reaction of quercetin unhydrate (QUH) or quercetin dihydrate (QDH) with the 2,2-diphenyl-1-picrylhydrazyl free radical (DPPH), as well as to identify some properties of these products. The study was carried out employing spectroscopic and computational methods, in order to know the effect of different conformations of quercetin on the mechanism of free radical scavenging. The results demonstrated that although the same oxidation products may be formed from QUH and QDH, their properties and the predominant product were different in each. The o-quinone was the predominant oxidation product of QUH, whereas in QDH it was established an equilibrium between o-quinone and extended p-quinone.
Materials | 2017
Fernando Javier Carrasco-Guigón; D.E. Rodríguez-Félix; María Mónica Castillo-Ortega; Hisila Santacruz-Ortega; Silvia Elena Burruel-Ibarra; José Carmelo Encinas-Encinas; Maribel Plascencia-Jatomea; P.J. Herrera-Franco; Tomás Madera-Santana
The preparation of composites of synthetic and natural polymers represent an interesting option to combine properties; in this manner, polypropylene and chitosan extruded films using a different proportion of components and polypropylene-graft-maleic anhydride (PPgMA) as compatibilizer were prepared. The effect of the content of the biopolymer in the polypropylene (PP) matrix, the addition of compatibilizer, and the particle size on the properties of the composites was analyzed using characterization by fourier transform-infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), differential scanning calorimetry (DSC), tensile strength, and contact angle, finding that in general, the addition of the compatibilizer and reducing the particle size of the chitosan, favored the physicochemical and morphological properties of the films.
Food Biophysics | 2017
Héctor M. Sarabia-Sainz; Wilfrido Torres-Arreola; Enrique Márquez-Ríos; Hisila Santacruz-Ortega; Ofelia Rouzaud-Sández; Elisa M. Valenzuela-Soto; Alexel Burgara-Estrella; Josafat Marina Ezquerra-Brauer
The chemical structure, thermal denaturation and nanostructure of collagen, obtained from a cation-exchange separation of the mantle, fins and tentacles of jumbo squid (Dosidicus gigas), were comparatively studied. The main idea of this work, was to provide an in-depth understanding of the interdependence between pyridinoline (Pyr) content, helix chemical structure and nanostructure of squid collagen with squid tissue firmness. The tentacles required more shear force and its collagen presented the higher temperature and enthalpy of transition, than the mantle and fins. The tentacle firmness may be explained by the relatively higher imino amino acid content, proline and lysine hydroxylation degrees and Pyr content of its collagen. Moreover, among the regions studied, the collagen from the tentacles had a more intense β band chain. Also, the Fourier transform infrared analysis and Raman spectra, implied that the collagen in the tentacles, was more intermolecularly ordered than the mantle and fins. Consistent with these results, a comparative evaluation of the surface morphology of the three regions, with atomic force microscopy, suggested a more ordered collagen structure in the tentacles (lower roughness values). Based on the above, collagen from tentacles has a higher degree of molecular order that sustains a higher muscle firmness compared to that of other anatomical regions.
Food Science and Biotechnology | 2018
Héctor M. Sarabia-Sainz; Josafat Marina Ezquerra-Brauer; Hisila Santacruz-Ortega; Ofelia Rouzaud-Sández; Elisa M. Valenzuela-Soto; Mónica Acosta-Elías; Wilfrido Torres-Arreola
Muscle from mantle, fins and arms of squid (Dosidicus gigas) were compared based on lysyl oxidase activity (LOX), chemical/structural and thermodynamic properties of highly cross-linked collagen. The arms collagen presented the highest temperature (Tp) and enthalpy of transition. The arms collagen thermic properties may be explained by the higher imino amino acid content, proline and lysine hydroxylation degrees. Moreover, among the regions, the collagen from the arms had a more intense β band chain, hydroxymerodesmosine peak in the resonance magnetic nuclear spectra and pyridinoline peak in the Raman spectra. Fins showed the highest LOX activity. The LOX activity was associated with the Tp, proline and lysine hydroxylation degrees. These results implied that the collagen in the arms was more intermolecularly ordered than the mantle and fins, and may provide a theoretical basis for a better understanding of the thermal behaviour of squid tissues during management and processing.
Journal of the Science of Food and Agriculture | 2018
Ivan J. Tolano-Villaverde; Víctor Manuel Ocaño-Higuera; Josafat Marina Ezquerra-Brauer; Irela Santos-Sauceda; Hisila Santacruz-Ortega; José Luis Cárdenas-López; Guillermo Rodríguez-Olibarría; Enrique Márquez-Ríos
BACKGROUND The giant squid (Dosidicus gigas) has been proposed as raw material to obtain myofibrillar protein concentrates. However, it has been observed that colloidal systems formed from squid proteins have limited stability. Therefore, the isolation and characterization of the actomyosin-paramyosin isolated (API) complex were performed, because they are the main proteins to which functionality has been attributed. RESULTS Densitogram analysis revealed 45% of actin, 38% of myosin and 17% of paramyosin. The amino acid profile indicates a higher proportion of acidic amino acids, which gives a higher negative charge; this was supported by the zeta potential. Total sulfhydryl (TSH) content was lower compared with proteins of other aquatic species. CONCLUSION The higher percentage of actin in relation to myosin, the presence of paramyosin, as well as the low content of sulfhydryl groups, could comprise the main causes of the low technological functional property of proteins from D. gigas mantle.
Inorganic Chemistry | 2016
Luis Miguel López-Martínez; Javier Pitarch-Jarque; Àlvar Martínez-Camarena; Enrique García-España; Roberto Tejero; Hisila Santacruz-Ortega; Rosa-Elena Navarro; Rogerio R. Sotelo-Mundo; Mario Alberto Leyva-Peralta; Antonio Doménech-Carbó; Begoña Verdejo
The synthesis, acid-base behavior, and Cu(2+) coordination chemistry of a new ligand (L1) consisting of an azamacrocyclic core appended with a lateral chain containing a 3-hydroxy-2-methyl-4(1H)-pyridinone group have been studied by potentiometry, cyclic voltammetry, and NMR and UV-vis spectroscopy. UV-vis and NMR studies showed that phenolate group was protonated at the highest pH values [log K = 9.72(1)]. Potentiometric studies point out the formation of Cu(2+) complexes of 1:2, 2:2, 4:3, 1:1, and 2:1 Cu(2+)/L1 stoichiometries. UV-vis analysis and electrochemical studies evidence the implication of the pyridinone moieties in the metal coordination of the 1:2 Cu(2+)/L1 complexes. L1 shows a stronger chelating ability than the reference chelating ligand deferiprone. While L1 shows no cytotoxicity in HeLa and ARPE-19 human cell lines (3.1-25.0 μg/mL), it has significant antioxidant activity, as denoted by TEAC assays at physiological pH. The addition of Cu(2+) diminishes the antioxidant activity because of its coordination to the pyridinone moiety phenolic group.
Food Research International | 2011
Mario Hiram Uriarte-Montoya; Hisila Santacruz-Ortega; Francisco J. Cinco-Moroyoqui; Ofelia Rouzaud-Sández; Maribel Plascencia-Jatomea; Josafat Marina Ezquerra-Brauer