Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Hiten D. Mistry is active.

Publication


Featured researches published by Hiten D. Mistry.


Hypertension | 2008

Reduced selenium concentrations and glutathione peroxidase activity in preeclamptic pregnancies.

Hiten D. Mistry; Vicky Wilson; Margaret M. Ramsay; Michael E. Symonds; Fiona Broughton Pipkin

Preeclampsia is pregnancy-specific, affecting 2% to 7% of women, and is a leading cause of perinatal and maternal morbidity and mortality. Preeclampsia may also predispose the fetus to increased risks of adult cardiovascular disease. Selenium, acting through the selenoprotein glutathione peroxidases, has critical roles in regulating antioxidant status. Recent reports implicate poor maternal selenium status as a nutritional factor predisposing the mother to preeclampsia but the fetus and placenta have not been studied in tandem. Measurement of selenium concentrations, expression, and activity levels of glutathione peroxidase and markers of oxidative stress were performed on maternal and umbilical venous blood samples or the placenta from 27 normal pregnant, 25 preeclamptic, and 22 healthy age-matched nonpregnant women. The results of this study revealed highly significant reductions in serum selenium concentrations and plasma glutathione peroxidase activity in pregnancy per se compared to nonpregnant controls. Moreover, these levels were further decreased in the preeclamptic mothers and babies compared to normal pregnancies. Umbilical venous selenium was particularly low (42.1±11.8 and 29.0±9.9 &mgr;g/L; mean±SD; P<0.05). Both mother and baby had significantly increased levels of markers for oxidative stress in the preeclamptic group. The placental glutathione peroxidase activity and immunohistochemical staining were also reduced in the preeclampsia placentae. Oxidative stress associated with preeclampsia may be a consequence of reduced antioxidant defense pathways specifically involving glutathione peroxidases, perhaps linked to reduced selenium availability. Reduced glutathione peroxidases could be associated with increased generation of toxic lipid peroxides contributing to the endothelial dysfunction and hypertension of preeclampsia.


American Journal of Obstetrics and Gynecology | 2012

Selenium in reproductive health.

Hiten D. Mistry; Fiona Broughton Pipkin; C.W.G. Redman; Lucilla Poston

Selenium is an essential trace element of importance to human biology and health. Increasing evidence suggests that this mineral plays an important role in normal growth and reproduction in animals and humans, and selenium supplementation is now recommended as part of public health policy in geographical areas with severe selenium deficiency in soil. This review addresses the biological functions of selenium followed by a detailed review of associations between selenium status and reproductive health. In many countries, selenium dietary intake falls below the recommended nutrient intakes and is inadequate to support maximal expression of the selenoenzymes. Numerous reports implicate selenium deficiency in several reproductive and obstetric complications including male and female infertility, miscarriage, preeclampsia, fetal growth restriction, preterm labor, gestational diabetes, and obstetric cholestasis. Currently, there is inadequate information from the available small intervention studies to inform public health strategies. Larger intervention trials are required to reinforce or refute a beneficial role of selenium supplementation in disorders of reproductive health.


The American Journal of Clinical Nutrition | 2011

Role of oxidative stress and antioxidant supplementation in pregnancy disorders

Lucilla Poston; Natalia Igosheva; Hiten D. Mistry; Paul Seed; Andrew Shennan; Sarosh Rana; S. Ananth Karumanchi; Lucy Chappell

Oxidative stress is widely implicated in failed reproductive performance, including infertility, miscarriage, diabetes-related congenital malformations, and preeclampsia. Maternal obesity is a strong risk factor for preeclampsia, and in a recent study we observed oxidative stress in the oocytes of obese animals before pregnancy as well as in early-stage embryos. This adds to the growing evidence that investigators need to focus more on the preconceptual period in efforts to prevent pregnancy disorders, including those related to oxidative stress. Our research has also focused on the role of free radicals and antioxidant capacity in preeclampsia. By measuring markers of lipid peroxidation and antioxidant capacity, we obtained unequivocal evidence for oxidative stress in this disorder. Partial failure of the process of placentation has been implicated, and recent findings suggest that ischemia-reperfusion in the placenta may contribute to oxidative stress in trophoblasts. Endoplasmic reticulum stress in the placenta may also play a role. Randomized controlled trials have been conducted by our group as well as others to determine whether early supplementation with vitamins C and E in women at risk of preeclampsia is beneficial, but these trials have shown no evidence that these supplements can prevent preeclampsia. Whether this indicates that an inappropriate antioxidant strategy was used or supplementation was administered too late in gestation to be beneficial is not known. Other potential approaches for preventing preeclampsia through amelioration of oxidative stress include the use of supplements in the preconceptual period, selenium supplements, antiperoxynitrite strategies, and statins.


Oxidative Medicine and Cellular Longevity | 2011

The Importance of Antioxidant Micronutrients in Pregnancy

Hiten D. Mistry; Paula J. Williams

Pregnancy places increased demands on the mother to provide adequate nutrition to the growing conceptus. A number of micronutrients function as essential cofactors for or themselves acting as antioxidants. Oxidative stress is generated during normal placental development; however, when supply of antioxidant micronutrients is limited, exaggerated oxidative stress within both the placenta and maternal circulation occurs, resulting in adverse pregnancy outcomes. The present paper summarises the current understanding of selected micronutrient antioxidants selenium, copper, zinc, manganese, and vitamins C and E in pregnancy. To summarise antioxidant activity of selenium is via its incorporation into the glutathione peroxidase enzymes, levels of which have been shown to be reduced in miscarriage and preeclampsia. Copper, zinc, and manganese are all essential cofactors for superoxide dismutases, which has reduced activity in pathological pregnancy. Larger intervention trials are required to reinforce or refute a beneficial role of micronutrient supplementation in disorders of pregnancies.


Placenta | 2010

Differential expression and distribution of placental glutathione peroxidases 1, 3 and 4 in normal and preeclamptic pregnancy

Hiten D. Mistry; Lesia O. Kurlak; Paula J. Williams; Margaret M. Ramsay; Michael E. Symonds; F. Broughton Pipkin

UNLABELLED Preeclampsia is a pregnancy-specific condition affecting 2-7% of women and a leading cause of perinatal and maternal morbidity and mortality; it may also predispose the mother and fetus to increased risks of adult cardiovascular disease. The selenoprotein glutathione peroxidases (GPxs) have critical roles in regulating antioxidant status. OBJECTIVES, STUDY DESIGN AND MAIN OUTCOME MEASURES Immunohistochemical measurements of GPx1, GPx3 and GPx4 protein expression were performed on samples taken from three standardised sampling sites between the cord insertion and the periphery of the placenta from 12 normotensive, and 12 preeclamptic women to establish if their expression differed between sampling sites. Total GPx activities were also examined from the three sampling sites of these placentae. RESULTS There were highly significant reductions in overall immunohistochemical staining of all 3 GPxs in the preeclampsia compared to normotensive placentae (GPx1: P=0.016; GPx3: P=0.003; GPx4: P<0.001). Furthermore, graded differences in expression between the standardised placental sampling sites were also found for GPx3 (higher in the inner region, P=0.05) and GPx4 (higher in the periphery, P=0.02) but not GPx1. Placental GPx enzyme activity was also significantly reduced in tissue from preeclamptic women as compared to normotensive women (P=0.007; the difference was more pronounced nearest the cord insertion). CONCLUSIONS We have shown highly significant reductions in expression of all three major classes of GPx in placentae from women with preeclampsia, and distribution gradients in activity, which may relate to the differential oxygenation of regions of the placenta.


Placenta | 2010

Expression of AT1R, AT2R and AT4R and Their Roles in Extravillous Trophoblast Invasion in the Human

Paula J. Williams; Hiten D. Mistry; Barbara A. Innes; Judith N. Bulmer; F. Broughton Pipkin

The placental renin-angiotensin system (RAS) is active from early pregnancy and may have a role in placentation. Angiotensin II (AngII) acts via binding to receptor types AT1R and AT2R. Recently smaller peptide members of the angiotensin family have been recognised as having biological relevance. Angiotensin (3-8) (AngIV) has a specific receptor (AT4R) and evokes hypertrophy, vasodilatation and vascular inflammatory response. The aim of this study was to characterise placental expression of AT1R, AT2R and AT4R, and to determine whether AngII and AngIV regulate extravillous trophoblast (EVT) invasion, apoptosis and proliferation. Placental samples were obtained from women undergoing elective surgical termination of pregnancy (TOP) at 8-10 weeks gestation (early TOP), 12-14 weeks gestation (mid TOP) or at delivery following normal pregnancy or with pre-eclampsia (PE). Immunohistochemistry and qRT-PCR were performed to determine placental mRNA and protein expression of AT1R, AT2R and AT4R at all gestational ages. EVT invasion following culture with AngII or AngIV was assessed in early placental tissue using Matrigel invasion assays. Invasion was assessed on day 6 of culture and placental explants were harvested for immunohistochemical analysis of apoptosis and proliferation. The results from qRT-PCR and immunohistochemistry showed placental AT1R expression which did not vary with gestation. The highest levels of expression of AT2R were found in early and mid TOP placentae compared to term pregnancy. Expression of AT4R was increased in term placentae, with a significant reduction in PE placentae. Moreover, culture with AngIV or AngII increased EVT invasion from placental explants, which showed increased trophoblast proliferation and reduced apoptosis. This study has characterised expression of AT4R and AT1R and AT2R in human placenta throughout normal pregnancy and in PE. Both AngIV and AngII may play an important role in normal pregnancy.


Maternal and Child Nutrition | 2014

Maternal selenium, copper and zinc concentrations in pregnancy associated with small‐for‐gestational‐age infants

Hiten D. Mistry; Lesia O. Kurlak; Scott D. Young; Annette Briley; Fiona Broughton Pipkin; Philip N. Baker; Lucilla Poston

Pregnancy during adolescence increases the risk of adverse pregnancy outcome, especially small-for-gestational-age (SGA) birth, which has been linked to micronutrient deficiencies. Smoking has been shown to be related to lower micronutrient concentrations. Different ethnicities have not been examined. We used a subset from a prospective observational study, the About Teenage Eating study consisting of 126 pregnant adolescents (14-18-year-olds) between 28 and 32 weeks gestation. Micronutrient status was assessed by inductively coupled mass spectrometry. Smoking was assessed by self-report and plasma cotinine, and SGA was defined as infants born <10th corrected birthweight centile. The main outcome measures were as follows: (1) maternal plasma selenium, copper and zinc concentrations in adolescent mothers giving birth to SGA vs. appropriate-for-gestational-age (AGA) infants; and (2) comparison of micronutrient concentrations between women of different ethnicities and smoking habits. The plasma selenium {mean ± standard deviation (SD) [95% confidence interval (CI)]} concentration was lower in the SGA [n = 19: 49.4 ± 7.3 (CI: 45.9, 52.9) µg L(-1)] compared with the AGA [n = 107: 65.1 ± 12.5 (CI: 62.7, 67.5) µg L(-1); P < 0.0001] group. Smoking mothers had a lower selenium concentration compared with non-smokers (P = 0.01) and Afro-Caribbean women had higher selenium concentrations compared with White Europeans (P = 0.02). Neither copper nor zinc concentrations varied between groups. Low plasma selenium concentration in adolescent mothers could contribute to the risk of delivering an SGA infant, possibly through lowering placental antioxidant defence, thus directly affecting fetal growth. Differences in plasma selenium between ethnicities may relate to variation in nutritional intake, requiring further investigation.


Placenta | 2013

The placental renin–angiotensin system and oxidative stress in pre-eclampsia

Hiten D. Mistry; Lesia O. Kurlak; F. Broughton Pipkin

UNLABELLED There is an inverse correlation between human birthweight and umbilical venous angiotensin II (AngII) concentrations. Oxidative stress and increased pro-renin receptor (PRR) both enhance the cleavage of angiotensin I from angiotensinogen (AGT). Pre-eclampsia, a hypertensive disorder of pregnancy, manifests as high blood pressure and proteinuria, and is a state of increased oxidative stress. OBJECTIVES, STUDY DESIGN AND MAIN OUTCOME MEASURES HYPOTHESIS Pre-eclampsia will be associated with increased placental expression of components of the renin-angiotensin system, which could result in reduced infant birthweight. Biopsies were taken 1 cm from the placental edge from 27 normotensive controls and 23 pre-eclamptic White European women. Immunohistochemistry was performed for AGT, PRR, glutathione peroxidase 3 (GPx3) and the AT1R and AT2R AngII receptors. Protein expression was semi-quantitatively assessed (H-score). RESULTS AT1R expression was significantly increased in pre-eclamptic placentae, and negatively correlated with birthweight (r = -0.529, P = 0.009). AT1R expression was also negatively correlated with GPx3 expression overall (r = -0.647; P = 0.005). AT2R expression positively correlated with AGT (r = 0.615, P = 0.002) in the pre-eclamptic placentae only. CONCLUSIONS The raised AT1R expression in pre-eclampsia, together with inadequate antioxidant protection, possibly through lower GPx activity, might enhance the vasoconstrictor effect of locally-generated AngII, contributing to the restricted fetal growth characteristic of pre-eclampsia. Conversely, the AT2R:AGT association within the pre-eclamptic placenta may provide a compensatory mechanism.


QJM: An International Journal of Medicine | 2009

The non-invasive biopsy—will urinary proteomics make the renal tissue biopsy redundant?

Kate Bramham; Hiten D. Mistry; Lucilla Poston; Lucy Chappell; Andrew J. Thompson

Proteomics is a rapidly advancing technique which gives functional insight into gene expression in living organisms. Urine is an ideal medium for study as it is readily available, easily obtained and less complex than other bodily fluids. Considerable progress has been made over the last 5 years in the study of urinary proteomics as a diagnostic tool for renal disease. Advantages over the traditional renal biopsy include accessibility, safety, the possibility of serial sampling and the potential for non-invasive prognostic and diagnostic monitoring of disease and an individuals response to treatment. Urinary proteomics is now moving from a discovery phase in small studies to a validation phase in much larger numbers of patients with renal disease. Whilst there are still some limitations in methodology, which are assessed in this review, the possibility of urinary proteomics replacing the invasive tissue biopsy for diagnosis of renal disease is becoming an increasingly realistic option.


Free Radical Biology and Medicine | 2015

Association between maternal micronutrient status, oxidative stress, and common genetic variants in antioxidant enzymes at 15 weeks׳ gestation in nulliparous women who subsequently develop preeclampsia.

Hiten D. Mistry; Carolyn Gill; Lesia O. Kurlak; Paul Seed; John E. Hesketh; Catherine Méplan; Lutz Schomburg; Lucy Chappell; Linda Morgan; Lucilla Poston

Preeclampsia is a pregnancy-specific condition affecting 2–7% of women and a leading cause of perinatal and maternal morbidity and mortality. Deficiencies of specific micronutrient antioxidant activities associated with copper, selenium, zinc, and manganese have previously been linked to preeclampsia at the time of disease. Our aims were to investigate whether maternal plasma micronutrient concentrations and related antioxidant enzyme activities are altered before preeclampsia onset and to examine the dependence on genetic variations in these antioxidant enzymes. Predisease plasma samples (15±1 weeks׳ gestation) were obtained from women enrolled in the international Screening for Pregnancy Endpoints (SCOPE) study who subsequently developed preeclampsia (n=244) and from age- and BMI-matched normotensive controls (n=472). Micronutrient concentrations were measured by inductively coupled plasma mass spectrometry; associated antioxidant enzyme activities, selenoprotein-P, ceruloplasmin concentration and activity, antioxidant capacity, and markers of oxidative stress were measured by colorimetric assays. Sixty-four tag–single-nucleotide polymorphisms (SNPs) within genes encoding the antioxidant enzymes and selenoprotein-P were genotyped using allele-specific competitive PCR. Plasma copper and ceruloplasmin concentrations were modestly but significantly elevated in women who subsequently developed preeclampsia (both P<0.001) compared to controls (median (IQR), copper, 1957.4 (1787, 2177.5) vs 1850.0 (1663.5, 2051.5) µg/L; ceruloplasmin, 2.5 (1.4, 3.2) vs 2.2 (1.2, 3.0) µg/ml). There were no differences in other micronutrients or enzymes between groups. No relationship was observed between genotype for SNPs and antioxidant enzyme activity. This analysis of a prospective cohort study reports maternal micronutrient concentrations in combination with associated antioxidant enzymes and SNPs in their encoding genes in women at 15 weeks׳ gestation that subsequently developed preeclampsia. The modest elevation in copper may contribute to oxidative stress, later in pregnancy, in those women that go on to develop preeclampsia. The lack of evidence to support the hypothesis that functional SNPs influence antioxidant enzyme activity in pregnant women argues against a role for these genes in the etiology of preeclampsia.

Collaboration


Dive into the Hiten D. Mistry's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Carlos Eduardo Poli-de-Figueiredo

Pontifícia Universidade Católica do Rio Grande do Sul

View shared research outputs
Researchain Logo
Decentralizing Knowledge