Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Hitoshi Araki is active.

Publication


Featured researches published by Hitoshi Araki.


Molecular Genetics and Genomics | 2004

Genome-wide identification of NBS genes in japonica rice reveals significant expansion of divergent non-TIR NBS-LRR genes

T. Zhou; Y. Wang; Jian-Qun Chen; Hitoshi Araki; Zhiqiang Jing; Ke Jiang; J. Shen; Dacheng Tian

A complete set of candidate disease resistance ( R) genes encoding nucleotide-binding sites (NBSs) was identified in the genome sequence of japonica rice ( Oryza sativa L. var. Nipponbare). These putative R genes were characterized with respect to structural diversity, phylogenetic relationships and chromosomal distribution, and compared with those in Arabidopsis thaliana. We found 535 NBS-coding sequences, including 480 non-TIR (Toll/IL-1 receptor) NBS-LRR (Leucine Rich Repeat) genes. TIR NBS-LRR genes, which are common in A. thaliana, have not been identified in the rice genome. The number of non-TIR NBS-LRR genes in rice is 8.7 times higher than that in A. thaliana, and they account for about 1% of all of predicted ORFs in the rice genome. Some 76% of the NBS genes were located in 44 gene clusters or in 57 tandem arrays, and 16 apparent gene duplications were detected in these regions. Phylogenetic analyses based both NBS and N-terminal regions classified the genes into about 200 groups, but no deep clades were detected, in contrast to the two distinct clusters found in A. thaliana. The structural and genetic diversity that exists among NBS-LRR proteins in rice is remarkable, and suggests that diversifying selection has played an important role in the evolution of R genes in this agronomically important species. (Supplemental material is available online at http://gattaca.nju.edu.cn.)


Evolutionary Applications | 2008

Fitness of hatchery-reared salmonids in the wild.

Hitoshi Araki; Barry A. Berejikian; Michael J. Ford; Michael S. Blouin

Accumulating data indicate that hatchery fish have lower fitness in natural environments than wild fish. This fitness decline can occur very quickly, sometimes following only one or two generations of captive rearing. In this review, we summarize existing data on the fitness of hatchery fish in the wild, and we investigate the conditions under which rapid fitness declines can occur. The summary of studies to date suggests: nonlocal hatchery stocks consistently reproduce very poorly in the wild; hatchery stocks that use wild, local fish for captive propagation generally perform better than nonlocal stocks, but often worse than wild fish. However, the data above are from a limited number of studies and species, and more studies are needed before one can generalize further. We used a simple quantitative genetic model to evaluate whether domestication selection is a sufficient explanation for some observed rapid fitness declines. We show that if selection acts on a single trait, such rapid effects can be explained only when selection is very strong, both in captivity and in the wild, and when the heritability of the trait under selection is high. If selection acts on multiple traits throughout the life cycle, rapid fitness declines are plausible.


Proceedings of the National Academy of Sciences of the United States of America | 2002

Signature of balancing selection in Arabidopsis

Dacheng Tian; Hitoshi Araki; Eli A. Stahl; Joy Bergelson; Martin Kreitman

Natural selection and genetic linkage cause DNA segments to have genealogical histories resembling those of the selected sites. When a polymorphism maintained by selection is old, it will have an island of enhanced sequence variability surrounding it, which represents a detectable “signature of selection.” We investigate the structure of single-nucleotide polymorphisms (SNPs) in a 20-kb interval containing the Arabidopsis thaliana disease resistance gene RPS5, a locus containing common alleles for the presence/absence of the entire locus. The alleles are considerably diverged at surrounding sites, indicative of an old polymorphism maintained by selection. The island of “enhanced” variability extends several kilobases to either side of the RPS5 deletion junction, and these SNPs are in nearly complete linkage disequilibrium with the RPS5 insertion/deletion. At a distance of 10 kb to either side of the locus, however, we find low levels of polymorphism and the absence of linkage disequilibrium between individual SNPs and RPS5 alleles. Our results show that the interval of enhanced variability surrounding this balanced polymorphism in Arabidopsis is large enough to be readily detected, but small enough to span the focal gene and few others. For this species it should be possible to identify the complete set of genes with long-lived polymorphisms, a potentially important subset of genes segregating for functional variants.


Nature | 2008

Single-nucleotide mutation rate increases close to insertions/deletions in eukaryotes

Dacheng Tian; Qiang Wang; Pengfei Zhang; Hitoshi Araki; Sihai Yang; Martin Kreitman; Thomas Nagylaki; Richard R. Hudson; Joy Bergelson; Jian-Qun Chen

Mutation hotspots are commonly observed in genomic sequences and certain human disease loci, but general mechanisms for their formation remain elusive. Here we investigate the distribution of single-nucleotide changes around insertions/deletions (indels) in six independent genome comparisons, including primates, rodents, fruitfly, rice and yeast. In each of these genomic comparisons, nucleotide divergence (D) is substantially elevated surrounding indels and decreases monotonically to near-background levels over several hundred bases. D is significantly correlated with both size and abundance of nearby indels. In comparisons of closely related species, derived nucleotide substitutions surrounding indels occur in significantly greater numbers in the lineage containing the indel than in the one containing the ancestral (non-indel) allele; the same holds within species for single-nucleotide mutations surrounding polymorphic indels. We propose that heterozygosity for an indel is mutagenic to surrounding sequences, and use yeast genome-wide polymorphism data to estimate the increase in mutation rate. The consistency of these patterns within and between species suggests that indel-associated substitution is a general mutational mechanism.


Biology Letters | 2009

Carry-over effect of captive breeding reduces reproductive fitness of wild-born descendants in the wild

Hitoshi Araki; Becky Cooper; Michael S. Blouin

Supplementation of wild populations with captive-bred organisms is a common practice for conservation of threatened wild populations. Yet it is largely unknown whether such programmes actually help population size recovery. While a negative genetic effect of captive breeding that decreases fitness of captive-bred organisms has been detected, there is no direct evidence for a carry-over effect of captive breeding in their wild-born descendants, which would drag down the fitness of the wild population in subsequent generations. In this study, we use genetic parentage assignments to reconstruct a pedigree and estimate reproductive fitness of the wild-born descendants of captive-bred parents in a supplemented population of steelhead trout (Oncorhynchus mykiss). The estimated fitness varied among years, but overall relative reproductive fitness was only 37 per cent in wild-born fish from two captive-bred parents and 87 per cent in those from one captive-bred and one wild parent (relative to those from two wild parents). Our results suggest a significant carry-over effect of captive breeding, which has negative influence on the size of the wild population in the generation after supplementation. In this population, the population fitness could have been 8 per cent higher if there was no carry-over effect during the study period.


Molecular Ecology | 2007

Effective population size of steelhead trout: influence of variance in reproductive success, hatchery programs, and genetic compensation between life-history forms.

Hitoshi Araki; Robin S. Waples; William R. Ardren; Becky Cooper; Michael S. Blouin

The effective population size is influenced by many biological factors in natural populations. To evaluate their relative importance, we estimated the effective number of breeders per year (Nb) and effective population size per generation (Ne) in anadromous steelhead trout (Oncorhynchus mykiss) in the Hood River, Oregon (USA). Using demographic data and genetic parentage analysis on an almost complete sample of all adults that returned to the river over 15 years (> 15 000 individuals), we estimated Nb for 13 run years and Ne for three entire generations. The results are as follows: (i) the ratio of Ne to the estimated census population size (N) was 0.17–0.40, with large variance in reproductive success among individuals being the primary cause of the reduction in Ne/N; (ii) fish from a traditional hatchery program (Htrad: nonlocal, multiple generations in a hatchery) had negative effects on Nb, not only by reducing mean reproductive success but also by increasing variance in reproductive success among breeding parents, whereas no sign of such effects was found in fish from supplementation hatchery programs (Hsupp: local, single generation in a hatchery); and (iii) Nb was relatively stable among run years, despite the widely fluctuating annual run sizes of anadromous adults. We found high levels of reproductive contribution of nonanadromous parents to anadromous offspring when anadromous run size is small, suggesting a genetic compensation between life‐history forms (anadromous and nonanadromous). This is the first study showing that reproductive interaction between different life‐history forms can buffer the genetic impact of fluctuating census size on Ne.


Genetics | 2005

Unique Evolutionary Mechanism in R-Genes Under the Presence/Absence Polymorphism in Arabidopsis thaliana

Jingdan Shen; Hitoshi Araki; Lingling Chen; Jian-Qun Chen; Dacheng Tian

While the presence/absence polymorphism is commonly observed in disease resistance (R-) genes in Arabidopsis, only a few R-genes under the presence/absence polymorphism (R-P/A) have been investigated. To understand the mechanism of the molecular evolution of R-P/A, we investigated genetic variation of nine R-P/A in A. thaliana from worldwide populations. The number of possessed R-genes varied widely among accessions (two to nine, on average 4.3 ± 1.6/accession). No pair of accessions shared the same haplotype, and no clear geographic differentiation was observed with respect to the pattern of presence/absence of the R-genes investigated. Presence allele frequencies also varied among loci (25–70%), and no linkage disequilibrium was detected among them. Although the LRR region in regular R-genes is known to be highly polymorphic and has a high Ka/Ks ratio in A. thaliana, nucleotide sequences of this region in the R-P/A showed a relatively low level of genetic variation (π = 0.0002–0.016) and low Ka/Ks (0.03–0.70, <1). In contrast, the nucleotide diversities around the deletion junction of R-P/A were constantly high between presence and absence accessions for the R-genes (Dxy = 0.031–0.103). Our results suggest that R-P/A loci evolved differently from other R-gene loci and that balancing selection plays an important role in molecular evolution of R-P/A.


Royal Society Open Science | 2015

MiFish, a set of universal PCR primers for metabarcoding environmental DNA from fishes: detection of more than 230 subtropical marine species

Masaki Miya; Yukuto Sato; Tsukasa Fukunaga; Tetsuya Sado; J. Y. Poulsen; Kodai Sato; Toshifumi Minamoto; Satoshi Yamamoto; Hiroki Yamanaka; Hitoshi Araki; Michio Kondoh; Wataru Iwasaki

We developed a set of universal PCR primers (MiFish-U/E) for metabarcoding environmental DNA (eDNA) from fishes. Primers were designed using aligned whole mitochondrial genome (mitogenome) sequences from 880 species, supplemented by partial mitogenome sequences from 160 elasmobranchs (sharks and rays). The primers target a hypervariable region of the 12S rRNA gene (163–185 bp), which contains sufficient information to identify fishes to taxonomic family, genus and species except for some closely related congeners. To test versatility of the primers across a diverse range of fishes, we sampled eDNA from four tanks in the Okinawa Churaumi Aquarium with known species compositions, prepared dual-indexed libraries and performed paired-end sequencing of the region using high-throughput next-generation sequencing technologies. Out of the 180 marine fish species contained in the four tanks with reference sequences in a custom database, we detected 168 species (93.3%) distributed across 59 families and 123 genera. These fishes are not only taxonomically diverse, ranging from sharks and rays to higher teleosts, but are also greatly varied in their ecology, including both pelagic and benthic species living in shallow coastal to deep waters. We also sampled natural seawaters around coral reefs near the aquarium and detected 93 fish species using this approach. Of the 93 species, 64 were not detected in the four aquarium tanks, rendering the total number of species detected to 232 (from 70 families and 152 genera). The metabarcoding approach presented here is non-invasive, more efficient, more cost-effective and more sensitive than the traditional survey methods. It has the potential to serve as an alternative (or complementary) tool for biodiversity monitoring that revolutionizes natural resource management and ecological studies of fish communities on larger spatial and temporal scales.


Molecular Plant-microbe Interactions | 2002

Pseudomonas viridiflava and P. syringae—Natural Pathogens of Arabidopsis thaliana

Katrin Jakob; Erica M. Goss; Hitoshi Araki; Tam Van; Martin Kreitman; Joy Bergelson

We report the isolation and identification of two natural pathogens of Arabidopsis thaliana, Pseudomonas viridiflava and Pseudomonas syringae, in the midwestern United States. P. viridiflava was found in six of seven surveyed Arabidopsis thaliana populations. We confirmed the presence in the isolates of the critical pathogenicity genes hrpS and hrpL. The pathogenicity of these isolates was verified by estimating in planta bacterial growth rates and by testing for disease symptoms and hypersensitive responses to A. thaliana. Infection of 21 A. thaliana ecotypes with six locally collected P. viridiflava isolates and with one P. syringae isolate showed both compatible (disease) and incompatible (resistance) responses. Significant variation in response to infection was evident among Arabidopsis ecotypes, both in terms of symptom development and in planta bacterial growth. The ability to grow and cause disease symptoms on particular ecotypes also varied for some P. viridiflava isolates. We believe that these pathogens will provide a powerful system for exploring coevolution in natural plant-pathogen interactions.


Genetics | 2007

Intraspecific Genetic Variations, Fitness Cost and Benefit of RPW8, A Disease Resistance Locus in Arabidopsis thaliana

Undral Orgil; Hitoshi Araki; Samantha Tangchaiburana; Robert Berkey; Shunyuan Xiao

The RPW8 locus of Arabidopsis thaliana confers broad-spectrum resistance to powdery mildew pathogens. In many A. thaliana accessions, this locus contains two homologous genes, RPW8.1 and RPW8.2. In some susceptible accessions, however, these two genes are replaced by HR4, a homolog of RPW8.1. Here, we show that RPW8.2 from A. lyrata conferred powdery mildew resistance in A. thaliana, suggesting that RPW8.2 might have gained the resistance function before the speciation of A. thaliana and A. lyrata. To investigate how RPW8 has been maintained in A. thaliana, we examined the nucleotide sequence polymorphisms in RPW8 from 51 A. thaliana accessions, related disease reaction phenotypes to the evolutionary history of RPW8.1 and RPW8.2, and identified mutations that confer phenotypic variations. The average nucleotide diversities were high at RPW8.1 and RPW8.2, showing no sign of selective sweep. Moreover, we found that expression of RPW8 incurs fitness benefits and costs on A. thaliana in the presence and absence of the pathogens, respectively. Our results suggest that polymorphisms at the RPW8 locus in A. thaliana may have been maintained by complex selective forces, including those from the fitness benefits and costs both associated with RPW8.

Collaboration


Dive into the Hitoshi Araki's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Becky Cooper

Oregon State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Naoki Osada

National Institute of Genetics

View shared research outputs
Researchain Logo
Decentralizing Knowledge