Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Hitoshi Iino is active.

Publication


Featured researches published by Hitoshi Iino.


Journal of Nucleic Acids | 2010

Molecular mechanisms of the whole DNA repair system: a comparison of bacterial and eukaryotic systems.

Rihito Morita; Shuhei Nakane; Atsuhiro Shimada; Masao Inoue; Hitoshi Iino; Taisuke Wakamatsu; Kenji Fukui; Noriko Nakagawa; Ryoji Masui; Seiki Kuramitsu

DNA is subjected to many endogenous and exogenous damages. All organisms have developed a complex network of DNA repair mechanisms. A variety of different DNA repair pathways have been reported: direct reversal, base excision repair, nucleotide excision repair, mismatch repair, and recombination repair pathways. Recent studies of the fundamental mechanisms for DNA repair processes have revealed a complexity beyond that initially expected, with inter- and intrapathway complementation as well as functional interactions between proteins involved in repair pathways. In this paper we give a broad overview of the whole DNA repair system and focus on the molecular basis of the repair machineries, particularly in Thermus thermophilus HB8.


Acta Crystallographica Section F-structural Biology and Crystallization Communications | 2008

Crystallization screening test for the whole-cell project on Thermus thermophilus HB8.

Hitoshi Iino; Hisashi Naitow; Yuki Nakamura; Noriko Nakagawa; Yoshihiro Agari; Mayumi Kanagawa; Akio Ebihara; Akeo Shinkai; Mitsuaki Sugahara; Masashi Miyano; Nobuo Kamiya; Shigeyuki Yokoyama; Ken Hirotsu; Seiki Kuramitsu

It was essential for the structural genomics of Thermus thermophilus HB8 to efficiently crystallize a number of proteins. To this end, three conventional robots, an HTS-80 (sitting-drop vapour diffusion), a Crystal Finder (hanging-drop vapour diffusion) and a TERA (modified microbatch) robot, were subjected to a crystallization condition screening test involving 18 proteins from T. thermophilus HB8. In addition, a TOPAZ (microfluidic free-interface diffusion) designed specifically for initial screening was also briefly examined. The number of diffraction-quality crystals and the time of appearance of crystals increased in the order HTS-80, Crystal Finder, TERA. With the HTS-80 and Crystal Finder, the time of appearance was short and the rate of salt crystallization was low. With the TERA, the number of diffraction-quality crystals was high, while the time of appearance was long and the rate of salt crystallization was relatively high. For the protein samples exhibiting low crystallization success rates, there were few crystallization conditions that were common to the robots used. In some cases, the success rate depended greatly on the robot used. The TOPAZ showed the shortest time of appearance and the highest success rate, although the crystals obtained were too small for diffraction studies. These results showed that the combined use of different robots significantly increases the chance of obtaining crystals, especially for proteins exhibiting low crystallization success rates. The structures of 360 of 944 purified proteins have been successfully determined through the combined use of an HTS-80 and a TERA.


Journal of Biological Chemistry | 2011

Evidence for ATP-dependent Structural Rearrangement of Nuclease Catalytic Site in DNA Mismatch Repair Endonuclease MutL

Tatsuya Yamamoto; Hitoshi Iino; Kwang Kim; Seiki Kuramitsu; Kenji Fukui

DNA mismatch repair (MMR) greatly contributes to genome integrity via the correction of mismatched bases that are mainly generated by replication errors. Postreplicative MMR excises a relatively long tract of error-containing single-stranded DNA. MutL is a widely conserved nicking endonuclease that directs the excision reaction to the error-containing strand of the duplex by specifically nicking the daughter strand. Because MutL apparently exhibits nonspecific nicking endonuclease activity in vitro, the regulatory mechanism of MutL has been argued. Recent studies suggest ATP-dependent conformational and functional changes of MutL, indicating that the regulatory mechanism involves the ATP binding and hydrolysis cycle. In this study, we investigated the effect of ATP binding on the structure of MutL. First, a cross-linking experiment confirmed that the N-terminal ATPase domain physically interacts with the C-terminal endonuclease domain. Next, hydrogen/deuterium exchange mass spectrometry clarified that the binding of ATP to the N-terminal domain induces local structural changes at the catalytic sites of MutL C-terminal domain. Finally, on the basis of the results of the hydrogen/deuterium exchange experiment, we successfully identified novel regions essential for the endonuclease activity of MutL. The results clearly show that ATP modulates the nicking endonuclease activity of MutL via structural rearrangements of the catalytic site. In addition, several Lynch syndrome-related mutations in human MutL homolog are located in the position corresponding to the newly identified catalytic region. Our data contribute toward understanding the relationship between mutations in MutL homolog and human disease.


Acta Crystallographica Section F-structural Biology and Crystallization Communications | 2009

Structure of dihydrodipicolinate synthase from Methanocaldococcus jannaschii.

Balasundaram Padmanabhan; Richard W. Strange; Svetlana V. Antonyuk; Mark J. Ellis; S. Samar Hasnain; Hitoshi Iino; Yoshihiro Agari; Yoshitaka Bessho; Shigeyuki Yokoyama

In bacteria and plants, dihydrodipicolinate synthase (DHDPS) plays a key role in the (S)-lysine biosynthesis pathway. DHDPS catalyzes the first step of the condensation of (S)-aspartate-beta-semialdehyde and pyruvate to form an unstable compound, (4S)-4-hydroxy-2,3,4,5-tetrahydro-(2S)-dipicolinic acid. The activity of DHDPS is allosterically regulated by (S)-lysine, a feedback inhibitor. The crystal structure of DHDPS from Methanocaldococcus jannaschii (MjDHDPS) was solved by the molecular-replacement method and was refined to 2.2 A resolution. The structure revealed that MjDHDPS forms a functional homotetramer, as also observed in Escherichia coli DHDPS, Thermotoga maritima DHDPS and Bacillus anthracis DHDPS. The binding-site region of MjDHDPS is essentially similar to those found in other known DHDPS structures.


Journal of Biochemistry | 2011

Crystal structure of the tandem-type universal stress protein TTHA0350 from Thermus thermophilus HB8

Hitoshi Iino; Nobutaka Shimizu; Masaru Goto; Akio Ebihara; Kenji Fukui; Ken Hirotsu; Seiki Kuramitsu

The genome sequence of an extremely thermophilic bacterium, Thermus thermophilus HB8, revealed that TTHA0350 is a tandem-type universal stress protein (Usp) consisting of two Usp domains. Usp proteins, which are characterized by a conserved domain consisting of 130-160 amino acids, are inducibly expressed under a large number of stress conditions. The N-terminal domain of TTHA0350 contains a motif similar to the consensus ATP-binding one (G-2 x-G-9x-G-(S/T)), but the C-terminal one seems to lack the consensus motif. In order to determine its structural properties, we determined the crystal structures of TTHA0350 in the unliganded form and TTHA0350•2ATP at 2.50 and 1.70 Å resolution, respectively. This is the first structure determination of a Usp family protein in both unliganded and ATP-liganded forms. TTHA0350 is folded into a fan-shaped structure which is similar to that of tandem-type Usp protein Rv2623 from Mycobacterium tuberculosis. However, the dimer assembly with C2-symmetry in TTHA0350 is quite different from that with D2-symmetry in Rv2623. The X-ray structure showed that not only the N-terminal but also the C-terminal domain binds one ATP, although the ATP-binding motif could not be detected in the C-terminal domain. The loop interacting with ATP in the C-terminal domain is in a conformation quite different from that in the N-terminal domain.


Acta Crystallographica Section F-structural Biology and Crystallization Communications | 2005

Structure of a conserved hypothetical protein, TTHA0849 from Thermus thermophilus HB8, at 2.4 A resolution: a putative member of the StAR-related lipid-transfer (START) domain superfamily.

Makoto Nakabayashi; Naoki Shibata; Hirofumi Komori; Yasufumi Ueda; Hitoshi Iino; Akio Ebihara; Seiki Kuramitsu; Yoshiki Higuchi

The crystal structure of a conserved hypothetical protein, TTHA0849 from Thermus thermophilus HB8, has been determined at 2.4 A resolution as a part of a structural and functional genomics project on T. thermophilus HB8. The main-chain folding shows a compact alpha+beta motif, forming a hydrophobic cavity in the molecule. A structural similarity search reveals that it resembles those steroidogenic acute regulatory proteins that contain the lipid-transfer (START) domain, even though TTHA0849 shows comparatively weak sequence identity to polyketide cyclases. However, the size of the ligand-binding cavity is distinctly smaller than other START domain-containing proteins, suggesting that it catalyses the transfer of smaller ligand molecules.


Archive | 2011

Biochemical Properties of MutL, a DNA Mismatch Repair Endonuclease

Kenji Fukui; Atsuhiro Shimada; Hitoshi Iino; Ryoji Masui; Seiki Kuramitsu

DNA mismatch repair (MMR) is one of the most widely conserved DNA repair systems, which repairs mismatched bases generated mainly by the error of DNA polymerases during replication (Friedberg, et al., 2006, Iyer, et al., 2006, Kunkel, et al., 2005, Morita, et al., 2010). MMR increases the replication fidelity by 20 to 400-fold (Schaaper, 1993). Mutations and epigenetic silencing in MMR genes cause human hereditary nonpolyposis colon cancers as well as sporadic tumors (Fishel, et al., 1995, Fishel, et al., 1994, Kane, et al., 1997, Leach, et al., 1993, Modrich, et al., 1996, Suter, et al., 2004), indicating the significance of this repair system. To date, two types of MMR mechanisms have been clarified: one is employed by eukaryotes and most bacteria (Fig. 1A and B) (Modrich, 2006) and the other is specific to Escherichia coli and other -proteobacteria (Fig. 1C) (Modrich, et al., 1996). The fundamental mechanism and the required proteins in the two types of MMRs are relatively similar to each other. A mismatch is recognized by the bacterial MutS homodimer, eukaryotic MutS (MSH2-MSH6 heterodimer), or MutS (MSH2-MSH3 heterodimer) (Acharya, et al., 2003, Drotschmann, et al., 2002, Gradia, et al., 1997, Gradia, et al., 1999, Lamers, et al., 2000, McCulloch, et al., 2003, Obmolova, et al., 2000, Tachiki, et al., 2000). Subsequently, the bacterial MutL homodimer or eukaryotic MutL (MLH1-PMS2 and MLH1-PMS1 heterodimers in humans and yeast, respectively) is recruited to the mismatched DNA to stimulate downstream events (Acharya, et al., 2003, Kadyrov, et al., 2006). The largest difference between the two types of MMR mechanisms is in the “strand discrimination” system. Although both bases constituting the mismatch are canonical, MMR needs to identify which base is to be repaired. In eukaryotes and most bacteria, MMR directs the repair to the error-containing strand of the mismatched duplex by recognizing the strand discontinuities in the newly synthesized strand (Kadyrov, et al., 2006, Kadyrov, et al., 2007, Larrea, et al., 2010, Modrich, 2006). The termini of leading and lagging strands are thought to serve as discrimination signals. On the other hand, E. coli MMR reads the absence of methylation at the restriction site in the newly synthesized strand (Iyer, et al., 2006, Kunkel, et al., 2005, Larrea, et al., 2010). Before the site-specific DNA methylase (e.g., E. coli Dam methylase (Schlagman, et


Biochemical and Biophysical Research Communications | 2008

Crystal structure of the YdjC-family protein TTHB029 from Thermus thermophilus HB8: structural relationship with peptidoglycan N-acetylglucosamine deacetylase.

Takahito Imagawa; Hitoshi Iino; Mayumi Kanagawa; Akio Ebihara; Seiki Kuramitsu; Hideaki Tsuge

The YdjC-family protein is widely distributed, from human to bacteria, but so far no three-dimensional structure and functional analysis of this family of proteins has been reported. We determined the three-dimensional structure of the YdjC homolog TTHB029 at a resolution of 2.9A. The overall structure of the monomer consists of (betaalpha)-barrel fold forming a homodimer. Asp21, His60, and His127 residues coordinate to Mg(2+) as a possible active site. TTHB029 shows structural similarity to the peptidoglycan N-acetylglucosamine deacetylase from Streptococcus pneumoniae (SpPgdA). The active site groove of SpPgdA includes the Zn(2+) coordinated to Asp276, His326, and His330. Despite the low sequence identity, metal-binding residues of Asp-His-His were conserved among the two enzymes. There were definitive differences, however, in that one of the histidines of the metal-binding site was substituted for the other histidine located on the other loop. Moreover, these important metal-binding residues and the residues of the presumed active site are fully conserved in YdjC-family protein.


Proteins | 2007

Crystal structure of TTHA0303 (TT2238), a four-helix bundle protein with an exposed histidine triad from Thermus thermophilus HB8 at 2.0 A.

Koji Nagata; Jun Ohtsuka; Mihoko Takahashi; Atsuko Asano; Hitoshi Iino; Akio Ebihara; Masaru Tanokura

Crystal structure of TTHA0303 (TT2238), a four-helix bundle protein with an exposed histidine triad from Thermus thermophilus HB8 at 2.0 Å Koji Nagata, Jun Ohtsuka, Mihoko Takahashi, Atsuko Asano, Hitoshi Iino, Akio Ebihara, and Masaru Tanokura* 1Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, University of Tokyo, Tokyo 113-8657, Japan 2 RIKEN SPring-8 Center, RIKEN Harima Institute, Hyogo, Japan


Journal of Structural Biology | 2015

Crystal structure and substrate-binding mode of GH63 mannosylglycerate hydrolase from Thermus thermophilus HB8

Takatsugu Miyazaki; Megumi Ichikawa; Hitoshi Iino; Atsushi Nishikawa; Takashi Tonozuka

Glycoside hydrolase family 63 (GH63) proteins are found in eukaryotes such as processing α-glucosidase I and also many bacteria and archaea. Recent studies have identified two bacterial and one plant GH63 mannosylglycerate hydrolases that act on both glucosylglycerate and mannosylglycerate, which are compatible solutes found in many thermophilic prokaryotes and some plants. Here we report the 1.67-Å crystal structure of one of these GH63 mannosylglycerate hydrolases, Tt8MGH from Thermus thermophilus HB8, which is 99% homologous to mannosylglycerate hydrolase from T. thermophilus HB27. Tt8MGH consists of a single (α/α)6-barrel catalytic domain with two additional helices and two long loops which form a homotrimer. The structures of this protein in complexes with glucose or glycerate were also determined at 1.77- or 2.10-Å resolution, respectively. A comparison of these structures revealed that the conformations of three flexible loops were largely different from each other. The conformational changes may be induced by ligand binding and serve to form finger-like structures for holding substrates. These findings represent the first-ever proposed substrate recognition mechanism for GH63 mannosylglycerate hydrolase.

Collaboration


Dive into the Hitoshi Iino's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge