Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Hitoshi Iwahashi is active.

Publication


Featured researches published by Hitoshi Iwahashi.


Chemical Research in Toxicology | 2009

PROTEIN ADSORPTION OF ULTRAFINE METAL OXIDE AND ITS INFLUENCE ON CYTOTOXICITY TOWARD CULTURED CELLS

Masanori Horie; Keiko Nishio; Katsuhide Fujita; Shigehisa Endoh; Arisa Miyauchi; Yoshiro Saito; Hitoshi Iwahashi; Kazuhiro Yamamoto; Hideki Murayama; Hajime Nakano; Naoki Nanashima; Etsuo Niki; Yasukazu Yoshida

Many investigations about the cellular response by metal oxide nanoparticles in vitro have been reported. However, the influence of the adsorption ability of metal oxide nanoparticles toward cells is unknown. The aim of this study is to understand the influence of adsorption by metal oxide nanoparticles on the cell viability in vitro. The adsorption abilities of six kinds of metal oxide nanoparticles, namely, NiO, ZnO, TiO2, CeO2, SiO2, and Fe2O3, to Dulbeccos modified Eagles medium supplemented with a 10% fetal bovine serum (DMEM-FBS) component such as serum proteins and Ca2) were estimated. All of the metal oxide nanoparticles adsorbed proteins and Ca2+ in the DMEM-FBS; in particular, TiO2, CeO2, and ZnO showed strong adsorption abilities. Furthermore, the influence of the depletion of medium components by adsorption to metal oxide nanoparticles on cell viability and proliferation was examined. The particles were removed from the dispersion by centrifugation, and the supernatant was applied to the cells. Both the cell viability and the proliferation of human keratinocyte HaCaT cells and human lung carcinoma A549 cells were affected by the supernatant. In particular, cell proliferation was strongly inhibited by the supernatant of TiO2 and CeO2 dispersions. The supernatant showed depletion of serum proteins and Ca2+ by adsorption to metal oxide nanoparticles. When the adsorption effect was blocked by the pretreatment of particles with FBS, the inhibitory effect was lost. However, in NiO and ZnO, which showed ion release, a decrease of inhibitory effect by pretreatment was not shown. Furthermore, the association of the primary particle size and adsorption ability was examined in TiO2. The adsorption ability of TiO2 depended on the primary particle size. The TiO2 nanoparticles were size dependently absorbed with proteins and Ca2+, thereby inducing cytotoxicity. In conclusion, the adsorption ability of metal oxide nanoparticles is an important factor for the estimation of cytotoxicity in vitro for low-toxicity materials.


Journal of Proteome Research | 2008

Integrated transcriptomics, proteomics, and metabolomics analyses to survey ozone responses in the leaves of rice seedling.

Kyoungwon Cho; Junko Shibato; Ganesh Kumar Agrawal; Young-Ho Jung; Akihiro Kubo; Nam-Soo Jwa; Shigeru Tamogami; Kouji Satoh; Shoshi Kikuchi; Tetsuji Higashi; Shinzo Kimura; Hikaru Saji; Yoshihide Tanaka; Hitoshi Iwahashi; Yoshinori Masuo; Randeep Rakwal

Ozone (O(3)), a serious air pollutant, is known to significantly reduce photosynthesis, growth, and yield and to cause foliar injury and senescence. Here, integrated transcriptomics, proteomics, and metabolomics approaches were applied to investigate the molecular responses of O(3) in the leaves of 2-week-old rice (cv. Nipponbare) seedlings exposed to 0.2 ppm O(3) for a period of 24 h. On the basis of the morphological alteration of O(3)-exposed rice leaves, transcript profiling of rice genes was performed in leaves exposed for 1, 12, and 24 h using rice DNA microarray chip. A total of 1535 nonredundant genes showed altered expression of more than 5-fold over the control, representing 8 main functional categories. Genes involved in information storage and processing (10%) and cellular processing and signaling categories (24%) were highly represented within 1 h of O(3) treatment; transcriptional factor and signal transduction, respectively, were the main subcategories. Genes categorized into information storage and processing (17, 23%), cellular processing and signaling (20, 16%) and metabolism (18, 19%) were mainly regulated at 12 and 24 h; their main subcategories were ribosomal protein, post-translational modification, and signal transduction and secondary metabolites biosynthesis, respectively. Two-dimensional gel electrophoresis-based proteomics analyses in combination with tandem mass spectrometer identified 23 differentially expressed protein spots (21 nonredundant proteins) in leaves exposed to O(3) for 24 h compared to respective control. Identified proteins were found to be involved in cellular processing and signaling (32%), photosynthesis (19%), and defense (14%). Capillary electrophoresis-mass spectrometry-based metabolomic profiling revealed accumulation of amino acids, gamma-aminobutyric acid, and glutathione in O(3) exposed leaves until 24 h over control. This systematic survey showed that O(3) triggers a chain reaction of altered gene, protein and metabolite expressions involved in multiple cellular processes in rice.


Biochemical and Biophysical Research Communications | 2002

Isolation of novel rice (Oryza sativa L.) multiple stress responsive MAP kinase gene, OsMSRMK2, whose mRNA accumulates rapidly in response to environmental cues

Ganesh Kumar Agrawal; Randeep Rakwal; Hitoshi Iwahashi

In search for components of MAPK (mitogen-activated protein kinase) cascades in rice (Oryza sativa L. cv. Nipponbare), we identified a single copy gene called OsMSRMK2 from jasmonic acid (JA) treated rice seedling leaf cDNA library. This gene has a conserved protein kinase domain, including a MAPK family signature, and encodes a 369 amino acid polypeptide with a predicted molecular mass of 42995.43 and a pI of 5.48. OsMSRMK2 did not show constitutive expression in leaves and was induced within 15 min in response to wounding by cut. Using in vitro system, we show that the expression of OsMSRMK2 mRNA was potently enhanced within 15 min by signalling molecules, protein phosphatase inhibitors, ultraviolet irradiation, fungal elicitor, heavy metals, high salt and sucrose, and drought. OsMSRMK2 expression was further modulated by co-application of JA, salicylic acid, and ethylene and required de novo synthesized protein factor(s) in its transient regulation. Moreover, high (37 degrees C) and low temperatures (12 degrees C) and environmental pollutants-ozone and sulfur dioxide-differentially regulate the OsMSRMK2 mRNA accumulation in leaves of intact plants. Present results demonstrating dramatic transcriptional and transient regulation of the OsMSRMK2 expression by diverse biotic/abiotic stresses, a first report for any rice (or plant) MAPK to date, suggest a role for OsMSRMK2 in rice defense/stress response pathways.


Chemico-Biological Interactions | 2012

Association of zinc ion release and oxidative stress induced by intratracheal instillation of ZnO nanoparticles to rat lung

Hiroko Fukui; Masanori Horie; Shigehisa Endoh; Haruhisa Kato; Katsuhide Fujita; Keiko Nishio; Lilian Kaede Komaba; Junko Maru; Arisa Miyauhi; Ayako Nakamura; Shinichi Kinugasa; Yasukazu Yoshida; Yoshihisa Hagihara; Hitoshi Iwahashi

Zinc oxide (ZnO) nanoparticles are one of the important industrial nanoparticles. The production of ZnO nanoparticles is increasing every year. On the other hand, it is known that ZnO nanoparticles have strong cytotoxicity. In vitro studies using culture cells revealed that ZnO nanoparticles induce severe oxidative stress. However, the in vivo influence of ZnO nanoparticles is still unclear. In the present study, rat lung was exposed to ZnO nanoparticles by intratracheal instillation, and the influences of ZnO nanoparticles to the lung in the acute phase, particularly oxidative stress, were examined. Additionally, in vitro cellular influences of ZnO nanoparticles were examined using lung carcinoma A549 cells and compared to in vivo examinations. The ZnO nanoparticles used in this study released zinc ion in both dispersions. In the in vivo examinations, ZnO dispersion induced strong oxidative stress in the lung in the acute phase. The oxidative stress induced by the ZnO nanoparticles was stronger than that of a ZnCl(2) solution. Intratracheal instillation of ZnO nanoparticles induced an increase of lipid peroxide, HO-1 and alpha-tocopherol in the lung. The ZnO nanoparticles also induced strong oxidative stress and cell death in culture cells. Intracellular zinc level and reactive oxygen species were increased. These results suggest that ZnO nanoparticles induce oxidative stress in the lung in the acute phase. Intracellular ROS level had a high correlation with intracellular Zn(2+) level. ZnO nanoparticles will stay in the lung and continually release zinc ion, and thus stronger oxidative stress is induced.


Chemical Research in Toxicology | 2009

Ultrafine NiO particles induce cytotoxicity in vitro by cellular uptake and subsequent Ni(II) release.

Masanori Horie; Keiko Nishio; Katsuhide Fujita; Haruhisa Kato; Ayako Nakamura; Shinichi Kinugasa; Shigehisa Endoh; Arisa Miyauchi; Kazuhiro Yamamoto; Hideki Murayama; Etsuo Niki; Hitoshi Iwahashi; Yasukazu Yoshida; Junko Nakanishi

Nickel oxide (NiO) is one of the important industrial materials used in electronic substrates and for ceramic engineering. Advancements in industrial technology have enabled the manufacture of ultrafine NiO particles. On the other hand, it is well-known that nickel compounds exert toxic effects. The toxicity of nickel compounds is mainly caused by nickel ions (Ni(2+)). However, the ion release properties of ultrafine NiO particles are still unclear. In the present study, the influences of ultrafine NiO particles on cell viability were examined in vitro to obtain fundamental data for the biological effects of ultrafine green NiO and ultrafine black NiO. Ultrafine NiO particles showed higher cytotoxicities toward human keratinocyte HaCaT cells and human lung carcinoma A549 cells than fine NiO particles and also showed higher solubilities in culture medium (Dulbeccos modified Eagles medium supplemented with 10% fetal bovine serum) than fine NiO particles. In particular, the concentration of Ni(2+) released into the culture medium by ultrafine green NiO was 150-fold higher than that released by fine green NiO. The concentrations of Ni(2+) released by both types of NiO particles in an aqueous solution containing amino acids were remarkably higher than those released by NiO particles in water. Moreover, we prepared a uniform and stable dispersion of ultrafine black NiO in culture medium and examined its influence on cell viability in comparison with that of NiCl(2), a soluble nickel compound. A medium exchange after 6 h of exposure resulted in a loss of cytotoxicity in the cells exposed to NiCl(2), whereas cytotoxicity was retained in the cells exposed to NiO. Transmission electron microscope observations revealed uptake of both ultrafine and fine NiO particles into HaCaT cells. Taken together, the present results suggest that the intracellular Ni(2+) release could be an important factor that determines the cytotoxicity of NiO. Ultrafine NiO is more cytotoxic than fine NiO in vitro.


Toxicology in Vitro | 2009

Reliable size determination of nanoparticles using dynamic light scattering method for in vitro toxicology assessment.

Haruhisa Kato; Mie Suzuki; Katsuhide Fujita; Masanori Horie; Shigehisa Endoh; Yasukazu Yoshida; Hitoshi Iwahashi; Kayori Takahashi; Ayako Nakamura; Shinichi Kinugasa

Dynamic light scattering (DLS) is widely used for the evaluation of the particle size in the toxicity assessment of nanoparticles. However, the many types of DLS instruments and analytical procedures sometimes give different apparent sizes of particles and make it complicated to understand the size dependence on particles for the toxicity assay. In this study, we established an evaluation method of secondary nanoparticle sizes using a DLS analysis. First, we established a practical method for determining size with an appropriate evaluation of uncertainties. This proposed method could be a universal protocol for toxicity assessment that would allow researchers to achieve some degree of concordance on the size of nanoparticles for an assessment. Second, we investigated the processes associated with particles in suspension by examining the changes in the size and the light scattering intensity of secondary nanoparticles during an in vitro toxicity assessment, since the transport mode of particles to cells is significant in understanding in vitro nano-toxicity. In this study, these two points were investigated on TiO(2) nanoparticles suspension as an example. The secondary particles of TiO(2) with a light scattering intensity-averaged diameter (d(l)) of 150-250 nm were characterized with appropriate uncertainties. The sizes were found to be comparable with values determined using other analytical procedures and other instruments. It is suggested that d(l) could be an effective size parameter for toxicity assessments. Furthermore, TiO(2) secondary nanoparticle suspensions are well dispersed with slow gravity settling, no agglomeration, with the diffusion process as the primary transport mode of particles to cells.


FEBS Letters | 2003

Small GTPase ‘Rop’: molecular switch for plant defense responses

Ganesh Kumar Agrawal; Hitoshi Iwahashi; Randeep Rakwal

The conserved Rho family of GTPases (Rho, Rac, and Cdc42) in fungi and mammals has emerged as a key regulator of diverse cellular activities, such as cytoskeletal rearrangements, programmed cell death, stress‐induced signaling, and cell growth and differentiation. In plants, a unique class of Rho‐like proteins, most closely related to mammalian Rac, has only been found and termed ‘Rop’ (Rho‐related GTPase from plant [Li et al. (1998) Plant Physiol. 118, 407–417; Yang (2002) Plant Cell 14, S375–S388]). ROPs have been implicated in regulating various plant cellular responses including defense against pathogens. It has been shown that ROPs, like mammalian Rac, trigger hydrogen peroxide production and hence the ‘oxidative burst’, a crucial component associated with the cell death, most likely via activation of nicotinamide adenine dinucleotide phosphate oxidase in both monocotyledonous and dicotyledonous species. Recent studies have established that ROPs also function as a molecular switch for defense signaling pathway(s) linked with disease resistance. As discerning the defense pathway remains one of the priority research areas in the field of plant biology, this review is therefore particularly focused on recent progresses that have been made towards understanding the plant defense responses mediated by ROPs.


Free Radical Biology and Medicine | 2011

α-Tocopherol suppresses lipid peroxidation and behavioral and cognitive impairments in the Ts65Dn mouse model of Down syndrome

Mototada Shichiri; Yasukazu Yoshida; Noriko Ishida; Yoshihisa Hagihara; Hitoshi Iwahashi; Hiroshi Tamai; Etsuo Niki

It is widely accepted that oxidative stress is involved in the pathogenesis of Down syndrome, but the effectiveness of antioxidant treatment remains inconclusive. We tested whether chronic administration of α-tocopherol ameliorates the cognitive deficits exhibited by Ts65Dn mice, a mouse model of Down syndrome. α-Tocopherol was administered to pregnant Ts65Dn females, from the day of conception throughout the pregnancy, and to pups over their entire lifetime, from birth to the end of the behavioral testing period. Cognitive deficits were confirmed for Ts65Dn mice fed a control diet, revealing reduced anxiety or regardlessness in the elevated-plus maze task test and spatial learning deficits in the Morris water maze test. However, supplementation with α-tocopherol attenuated both cognitive impairments. In addition, we found that levels of 8-iso-prostaglandin F(2α) in brain tissue and hydroxyoctadecadienoic acid and 7-hydroxycholesterol in the plasma of Ts65Dn mice were higher than those of control mice. Supplementation with α-tocopherol decreased levels of lipid peroxidation products in Ts65Dn mice. Furthermore, we found out that α-tocopherol improved hypocellularity in the hippocampal dentate gyrus of Ts65Dn mice. These results imply that α-tocopherol supplementation from an early stage may be an effective treatment for the cognitive deficits associated with Down syndrome.


Metallomics | 2012

Association of the physical and chemical properties and the cytotoxicity of metal oxide nanoparticles: metal ion release, adsorption ability and specific surface area

Masanori Horie; Katsuhide Fujita; Haruhisa Kato; Shigehisa Endoh; Keiko Nishio; Lilian Kaede Komaba; Ayako Nakamura; Arisa Miyauchi; Shinichi Kinugasa; Yoshihisa Hagihara; Etsuo Niki; Yasukazu Yoshida; Hitoshi Iwahashi

Association of cellular influences and physical and chemical properties were examined for 24 kinds of industrial metal oxide nanoparticles: ZnO, CuO, NiO, Sb(2)O(3), CoO, MoO(3), Y(2)O(3), MgO, Gd(2)O(3), SnO(2), WO(3), ZrO(2), Fe(2)O(3), TiO(2), CeO(2), Al(2)O(3), Bi(2)O(3), La(2)O(3), ITO, and cobalt blue pigments. We prepared a stable medium dispersion for each nanoparticle and examined the influence on cell viability and oxidative stress together with physical and chemical characterizations. ZnO, CuO, NiO, MgO, and WO(3) showed a large amount of metal ion release in the culture medium. The cellular influences of these soluble nanoparticles were larger than insoluble nanoparticles. TiO(2), SnO(2), and CeO(2) nanoparticles showed strong protein adsorption ability; however, cellular influences of these nanoparticles were small. The primary particle size and the specific surface area seemed unrelated to cellular influences. Cellular influences of metal oxide nanoparticles depended on the kind and concentrations of released metals in the solution. For insoluble nanoparticles, the adsorption property was involved in cellular influences. The primary particle size and specific surface area of metal oxide nanoparticles did not affect directly cellular influences. In conclusion the most important cytotoxic factor of metal oxide nanoparticles was metal ion release.


Toxicology | 2009

Gene expression profiles in rat lung after inhalation exposure to C60 fullerene particles.

Katsuhide Fujita; Yasuo Morimoto; Akira Ogami; Toshihiko Myojyo; Isamu Tanaka; Manabu Shimada; Wei-Ning Wang; Shigehisa Endoh; Kunio Uchida; Tetsuya Nakazato; Kazuhiro Yamamoto; Hiroko Fukui; Masanori Horie; Yasukazu Yoshida; Hitoshi Iwahashi; Junko Nakanishi

Concern over the influence of nanoparticles on human health has risen due to advances in the development of nanotechnology. We are interested in the influence of nanoparticles on the pulmonary system at a molecular level. In this study, gene expression profiling of the rat lung after whole-body inhalation exposure to C(60) fullerene (0.12mg/m(3); 4.1x10(4) particles/cm(3), 96nm diameter) and ultrafine nickel oxide (Uf-NiO) particles (0.2mg/m(3); 9.2x10(4) particles/cm(3), 59nm diameter) as a positive control were employed to gain insights into these molecular events. In response to C(60) fullerene exposure for 6h a day, for 4 weeks (5 days a week), C(60) fullerene particles were located in alveolar epithelial cells at 3 days post-exposure and engulfed by macrophages at both 3 days and 1 month post-exposures. Gene expression profiles revealed that few genes involved in the inflammatory response, oxidative stress, apoptosis, and metalloendopeptidase activity were up-regulated at both 3 days and 1 month post-exposure. Only some genes associated with the immune system process, including major histocompatibility complex (MHC)-mediated immunity were up-regulated. These results were significantly different from those of Uf-NiO particles which induced high expression of genes associated with chemokines, oxidative stress, and matrix metalloproteinase 12 (Mmp12), suggesting that Uf-NiO particles lead to acute inflammation for the inhalation exposure period, and the damaged tissues were repaired in the post-exposure period. We suggest that C(60) fullerene might not have a severe pulmonary toxicity under the inhalation exposure condition.

Collaboration


Dive into the Hitoshi Iwahashi's collaboration.

Top Co-Authors

Avatar

Randeep Rakwal

National Institute of Advanced Industrial Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Masanori Horie

National Institute of Advanced Industrial Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Emiko Kitagawa

National Institute of Advanced Industrial Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Katsuhide Fujita

National Institute of Advanced Industrial Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Yasukazu Yoshida

National Institute of Advanced Industrial Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Shigehisa Endoh

National Institute of Advanced Industrial Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Haruhisa Kato

National Institute of Advanced Industrial Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Junko Shibato

National Institute of Advanced Industrial Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Yasuhiko Komatsu

National Institute of Advanced Industrial Science and Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge