Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Hitoshi Komatsuzawa is active.

Publication


Featured researches published by Hitoshi Komatsuzawa.


Applied and Environmental Microbiology | 2011

Expression of Virulence Factors by Staphylococcus aureus Grown in Serum

Yuichi Oogai; Miki Matsuo; Masahito Hashimoto; Fuminori Kato; Motoyuki Sugai; Hitoshi Komatsuzawa

ABSTRACT Staphylococcus aureus produces many virulence factors, including toxins, immune-modulatory factors, and exoenzymes. Previous studies involving the analysis of virulence expression were mainly performed by in vitro experiments using bacterial medium. However, when S. aureus infects a host, the bacterial growth conditions are quite different from those in a medium, which may be related to the different expression of virulence factors in the host. In this study, we investigated the expression of virulence factors in S. aureus grown in calf serum. The expression of many virulence factors, including hemolysins, enterotoxins, proteases, and iron acquisition factors, was significantly increased compared with that in bacterial medium. In addition, the expression of RNA III, a global regulon for virulence expression, was significantly increased. This effect was partially restored by the addition of 300 μM FeCl3 into serum, suggesting that iron depletion is associated with the increased expression of virulence factors in serum. In chemically defined medium without iron, a similar effect was observed. In a mutant with agr inactivated grown in serum, the expression of RNA III, psm, and sec4 was not increased, while other factors were still induced in the mutant, suggesting that another regulatory factor(s) is involved. In addition, we found that serum albumin is a major factor for the capture of free iron to prevent the supply of iron to bacteria grown in serum. These results indicate that S. aureus expresses virulence factors in adaptation to the host environment.


PLOS ONE | 2013

Three Distinct Two-Component Systems Are Involved in Resistance to the Class I Bacteriocins, Nukacin ISK-1 and Nisin A, in Staphylococcus aureus

Miki Kawada-Matsuo; Yuuma Yoshida; Takeshi Zendo; Jun-ichi Nagao; Yuichi Oogai; Yasunori Nakamura; Kenji Sonomoto; Norifumi Nakamura; Hitoshi Komatsuzawa

Staphylococcus aureus uses two-component systems (TCSs) to adapt to stressful environmental conditions. To colonize a host, S. aureus must resist bacteriocins produced by commensal bacteria. In a comprehensive analysis using individual TCS inactivation mutants, the inactivation of two TCSs, graRS and braRS, significantly increased the susceptibility to the class I bacteriocins, nukacin ISK-1 and nisin A, and inactivation of vraSR slightly increased the susceptibility to nukacin ISK-1. In addition, two ABC transporters (BraAB and VraDE) regulated by BraRS and one transporter (VraFG) regulated by GraRS were associated with resistance to nukacin ISK-1 and nisin A. We investigated the role of these three TCSs of S. aureus in co-culture with S. warneri, which produces nukacin ISK-1, and Lactococcus lactis, which produces nisin A. When co-cultured with S. warneri or L. lactis, the braRS mutant showed a significant decrease in its population compared with the wild-type, whereas the graRS and vraSR mutants showed slight decreases. Expression of vraDE was elevated significantly in S. aureus co-cultured with nisin A/nukacin ISK-1-producing strains. These results suggest that three distinct TCSs are involved in the resistance to nisin A and nukacin ISK-1. Additionally, braRS and its related transporters played a central role in S. aureus survival in co-culture with the strains producing nisin A and nukacin ISK-1.


Microbiology | 2011

Growth-phase dependence of susceptibility to antimicrobial peptides in Staphylococcus aureus

Miki Matsuo; Yuichi Oogai; Fuminori Kato; Motoyuki Sugai; Hitoshi Komatsuzawa

Bacterial cell surface charge is responsible for susceptibility to cationic antimicrobial peptides. Previously, Staphylococcus aureus dlt and mprF were identified as factors conferring a positive charge upon cell surfaces. In this study, we investigated the regulation of cell surface charge during growth. Using a group of S. aureus MW2 mutants, which are gene-inactivated in 15 types of two-component systems (TCSs), we tested dltC and mprF expression and found that two TCSs, aps and agr, were associated with dltC and mprF expression in a growth phase-dependent manner. The first of these, aps, which had already been identified as a sensor of antimicrobial peptides and a positive regulator of dlt and mprF expression, was expressed strongly in the exponential phase, while its expression was significantly suppressed by agr in the stationary phase, resulting in higher expression of dltC and mprF in the exponential phase and lower expression in the stationary phase. Since both types of expression affected the cell surface charge, the susceptibility to antimicrobial peptides and cationic antibiotics was changed during growth. Furthermore, we found that the ability to sense antimicrobial peptides only functioned in the exponential phase. These results suggest that cell surface charge is tightly regulated during growth in S. aureus.


Fems Microbiology Letters | 2011

Bacitracin sensing and resistance in Staphylococcus aureus.

Yuuma Yoshida; Miki Matsuo; Yuichi Oogai; Fuminori Kato; Norifumi Nakamura; Motoyuki Sugai; Hitoshi Komatsuzawa

Bacterial two-component systems (TCSs) have been demonstrated to be associated with not only the expression of virulence factors, but also the susceptibility to antibacterial agents. In Staphylococcus aureus, 16 types of TCSs have been identified. We previously found that the inactivation of one uncharacterized TCS (designated as BceRS, MW gene ID: MW2545-2544) resulted in an increase in susceptibility to bacitracin. In this study, we focused on this TCS and tried to identify the TCS-controlled factors affecting the susceptibility to bacitracin. We found that two ABC transporters were associated with the susceptibility to bacitracin. One transporter designated as BceAB (MW2543-2542) is downstream of this TCS, while another (formerly designated as VraDE: MW2620-2621) is separate from this TCS. Both transporters showed homology with several bacitracin-resistance factors in Gram-positive bacteria. Inactivation of each of these two transporters increased the susceptibility to bacitracin. Expressions of these transporters were significantly increased by the addition of bacitracin, while this induction was not observed in the TCS-inactivated mutant. These results indicate that this TCS senses bacitracin, and also positively regulates the expression of two ABC transporters.


Infection and Immunity | 2013

The Surface Layer of Tannerella forsythia Contributes to Serum Resistance and Oral Bacterial Coaggregation

Yuichi Oogai; Miki Kawada-Matsuo; Sakuo Yamada; Kenji Fukutsuji; Keiji Nagano; Fuminobu Yoshimura; Kazuyuki Noguchi; Hitoshi Komatsuzawa

ABSTRACT Tannerella forsythia is an anaerobic, Gram-negative bacterium involved in the so-called “red complex,” which is associated with severe and chronic periodontitis. The surface layer (S-layer) of T. forsythia is composed of cell surface glycoproteins, such as TfsA and TfsB, and is known to play a role in adhesion/invasion and suppression of proinflammatory cytokine expression. Here we investigated the association of this S-layer with serum resistance and coaggregation with other oral bacteria. The growth of the S-layer-deficient mutant in a bacterial medium containing more than 20% non-heat-inactivated calf serum (CS) or more than 40% non-heat-inactivated human serum was significantly suppressed relative to that of the wild type (WT). Next, we used confocal microscopy to perform quantitative analysis on the effect of serum. The survival ratio of the mutant exposed to 100% non-heat-inactivated CS (76% survival) was significantly lower than that of the WT (97% survival). Furthermore, significant C3b deposition was observed in the mutant but not in the WT. In a coaggregation assay, the mutant showed reduced coaggregation with Streptococcus sanguinis, Streptococcus salivarius, and Porphyromonas gingivalis but strong coaggregation with Fusobacterium nucleatum. These results indicated that the S-layer of T. forsythia plays multiple roles in virulence and may be associated with periodontitis.


Infection and Immunity | 2013

Staphylococcus aureus SasA Is Responsible for Binding to the Salivary Agglutinin gp340, Derived from Human Saliva

Kenji Kukita; Miki Kawada-Matsuo; Takahiko Oho; Mami Nagatomo; Yuichi Oogai; Masahito Hashimoto; Yasuo Suda; Takuo Tanaka; Hitoshi Komatsuzawa

ABSTRACT Staphylococcus aureus is a major human pathogen that can colonize the nasal cavity, skin, intestine, and oral cavity as a commensal bacterium. gp340, also known as DMBT1 (deleted in malignant brain tumors 1), is associated with epithelial differentiation and innate immunity. In the oral cavity, gp340 induces salivary aggregation with several oral bacteria and promotes bacterial adhesion to tissues such as the teeth and mucosa. S. aureus is often isolated from the oral cavity, but the mechanism underlying its persistence in the oral cavity remains unclear. In this study, we investigated the interaction between S. aureus and gp340 and found that S. aureus interacts with saliva- and gp340-coated resin. We then identified the S. aureus factor(s) responsible for binding to gp340. The cell surface protein SasA, which is rich in basic amino acids (BR domain) at the N terminus, was responsible for binding to gp340. Inactivation of the sasA gene resulted in a significant decrease in S. aureus binding to gp340-coated resin. Also, recombinant SasA protein (rSasA) showed binding affinity to gp340, which was inhibited by the addition of N-acetylneuraminic acid. Surface plasmon resonance analysis showed that rSasA significantly bound to the NeuAcα(2-3)Galβ(1-4)GlcNAc structure. These results indicate that SasA is responsible for binding to gp340 via the N-acetylneuraminic acid moiety.


Applied and Environmental Microbiology | 2013

dpr and sod in Streptococcus mutans are involved in coexistence with S. sanguinis, and PerR is associated with resistance to H2O2.

Kei Fujishima; Miki Kawada-Matsuo; Yuichi Oogai; Masayuki Tokuda; Mitsuo Torii; Hitoshi Komatsuzawa

ABSTRACT Large numbers of bacteria coexist in the oral cavity. Streptococcus sanguinis, one of the major bacteria in dental plaque, produces hydrogen peroxide (H2O2), which interferes with the growth of other bacteria. Streptococcus mutans, a cariogenic bacterium, can coexist with S. sanguinis in dental plaque, but to do so, it needs a means of detoxifying the H2O2 produced by S. sanguinis. In this study, we investigated the association of three oxidative stress factors, Dpr, superoxide dismutase (SOD), and AhpCF, with the resistance of S. sanguinis to H2O2. The knockout of dpr and sod significantly increased susceptibility to H2O2, while the knockout of ahpCF had no apparent effect on susceptibility. In particular, dpr inactivation resulted in hypersensitivity to H2O2. Next, we sought to identify the factor(s) involved in the regulation of these oxidative stress genes and found that PerR negatively regulated dpr expression. The knockout of perR caused increased dpr expression levels, resulting in low-level susceptibility to H2O2 compared with the wild type. Furthermore, we evaluated the roles of perR, dpr, and sod when S. mutans was cocultured with S. sanguinis. Culturing of the dpr or sod mutant with S. sanguinis showed a significant decrease in the S. mutans population ratio compared with the wild type, while the perR mutant increased the ratio. Our results suggest that dpr and sod in S. mutans are involved in coexistence with S. sanguinis, and PerR is associated with resistance to H2O2 in regulating the expression of Dpr.


Journal of Endodontics | 2010

The Antimicrobial Peptide LL37 Induces the Migration of Human Pulp Cells: A Possible Adjunct for Regenerative Endodontics

Mikihito Kajiya; Hideki Shiba; Hitoshi Komatsuzawa; Kazuhisa Ouhara; Tsuyoshi Fujita; Katsuhiro Takeda; Yuushi Uchida; Noriyoshi Mizuno; Hiroyuki Kawaguchi; Hidemi Kurihara

INTRODUCTIONnThe antimicrobial peptide LL37 has multiple functions, such as the induction of angiogenesis and migration. Pulp cell migration is a key phenomenon in the early stage of pulp-dentin complex regeneration. In this study, we examined the effect of LL37 on the migration of human pulp (HP) cells.nnnMETHODSnHP cells at the sixth passage were exposed to LL37. The migration of HP cells was assessed by a wound-healing assay. The phosphorylation of epidermal growth factor receptor (EGFR) and c-Jun N-terminal kinase (JNK) was analyzed by immunoblotting.nnnRESULTSnLL37 as well as heparin binding (HB)-EGF, which is an agonist of EGFR, induced HP cell migration. LL37 increased the level of phosphorylated EGFR. An anti-EGFR antibody, an EGFR tyrosine kinase inhibitor, and a JNK inhibitor abolished the migration induced by both LL37 and HB-EGF. Furthermore, the two peptides increased the levels of phosphorylated JNK.nnnCONCLUSIONSnLL37 activates EGFR and JNK to induce HP cell migration, and it may contribute to enhancing the regeneration of pulp-dentin complexes.


PLOS ONE | 2011

Aggregatibacter actinomycetemcomitans Omp29 Is Associated with Bacterial Entry to Gingival Epithelial Cells by F-Actin Rearrangement

Mikihito Kajiya; Hitoshi Komatsuzawa; Annatoula Papantonakis; Makoto Seki; Seicho Makihira; Kazuhisa Ouhara; Yutaka Kusumoto; Shinya Murakami; Martin A. Taubman; Toshihisa Kawai

The onset and progressive pathogenesis of periodontal disease is thought to be initiated by the entry of Aggregatibacter actinomycetemcomitans (Aa) into periodontal tissue, especially gingival epithelium. Nonetheless, the mechanism underlying such bacterial entry remains to be clarified. Therefore, this study aimed to investigate the possible role of Aa outer membrane protein 29 kD (Omp29), a homologue of E. coli OmpA, in promoting bacterial entry into gingival epithelial cells. To accomplish this, Omp29 expression vector was incorporated in an OmpA-deficient mutant of E. coli. Omp29+/OmpA− E. coli demonstrated 22-fold higher entry into human gingival epithelial line cells (OBA9) than Omp29−/OmpA− E. coli. While the entry of Aa and Omp29+/OmpA− E. coli into OBA9 cells were inhibited by anti-Omp29 antibody, their adherence to OBA9 cells was not inhibited. Stimulation of OBA9 cells with purified Omp29 increased the phosphorylation of focal adhesion kinase (FAK), a pivotal cell-signaling molecule that can up-regulate actin rearrangement. Furthermore, Omp29 increased the formation of F-actin in OBA9 cells. The internalization of Omp29-coated beads and the entry of Aa into OBA9 were partially inhibited by treatment with PI3-kinase inhibitor (Wortmannin) and Rho GTPases inhibitor (EDIN), both known to convey FAK-signaling to actin-rearrangement. These results suggest that Omp29 is associated with the entry of Aa into gingival epithelial cells by up-regulating F-actin rearrangement via the FAK signaling pathway.


Virulence | 2011

Role of two-component systems in the resistance of Staphylococcus aureus to antibacterial agents.

Miki Kawada-Matsuo; Yuuma Yoshida; Norifumi Nakamura; Hitoshi Komatsuzawa

Two-component systems (TCSs) play important roles in the adaptation of bacteria to environmental changes and the regulation of virulence factor expression. In addition, the association of TCSs with susceptibility to antibacterial agents has been demonstrated in some bacterial species. Staphylococcus aureus, a major human pathogen that can cause serious problems due to nosocomial infections, possesses 16 TCSs. Here we report a TCS, designated BceRS (MW2 gene ID: MW2545-44), which is related to bacitracin susceptibility. We found that BceRS regulates the expression of two transporters that determine susceptibility to bacitracin. One of these, BceAB (MW2543-42), is located downstream of BceRS, while the other, VraDE (MW2620-21), is more distant. With regard to other TCSs, VraRS and Aps/GraRS are reportedly associated with susceptibility to cell wall synthesis inhibitors and cationic antibacterial agents, respectively. Therefore, S. aureus possesses at least three TCSs that are involved in mediating its resistance to antibacterial agents.

Collaboration


Dive into the Hitoshi Komatsuzawa's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge