Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Hitoshi Miyazaki is active.

Publication


Featured researches published by Hitoshi Miyazaki.


Arteriosclerosis, Thrombosis, and Vascular Biology | 2003

Role of JNK, p38, and ERK in Platelet-Derived Growth Factor–Induced Vascular Proliferation, Migration, and Gene Expression

Yumei Zhan; Shokei Kim; Yasukatsu Izumi; Yasuhiro Izumiya; Takafumi Nakao; Hitoshi Miyazaki; Hiroshi Iwao

Objective—We investigated the comparative roles of mitogen-activated protein (MAP) kinases, including c-Jun NH2-terminal kinase (JNK), extracellular signal-regulated kinase (ERK), and p38, in vascular smooth muscle cell (VSMC) proliferation, migration, and gene expression. Methods and Results—VSMCs were infected with recombinant adenovirus containing dominant-negative mutants of ERK, p38, and JNK (Ad-DN-ERK, Ad-DN-p38, and Ad-DN-JNK, respectively) to specifically inhibit the respective MAP kinases and then stimulated with platelet-derived growth factor (PDGF)-BB. Ad-DN-ERK attenuated PDGF-BB–induced VSMC proliferation more potently than Ad-DN-p38 or Ad-DN-JNK, indicating the dominant role of ERK in VSMC proliferation. Ad-DN-ERK, Ad-DN-p38, and Ad-DN-JNK similarly inhibited PDGF-induced VSMC migration. Ad-DN-ERK and Ad-DN-JNK suppressed PDGF-BB–induced downregulation of cyclin-dependent kinase inhibitor p27Kip1, whereas Ad-DN-p38 decreased PDGF-BB–induced upregulation of p21Cip1. Ad-DN-ERK inhibited PDGF-BB–induced plasminogen activator inhibitor type-1 (PAI-1), monocyte chemoattractant protein-1, and transforming growth factor-&bgr;1 expressions, Ad-DN-p38 blocked monocyte chemoattractant protein-1 and transforming growth factor-&bgr;1 expression but not PAI-1, whereas Ad-DN-JNK suppressed only PAI-1 expression. Moreover, in vivo gene transfer of Ad-DN-p38 to rat carotid artery caused the inhibition of intimal hyperplasia by balloon injury, indicating the involvement of p38 in vascular remodeling in vivo. Conclusions—We propose that these 3 MAP kinases participate in vascular diseases via differential molecular mechanisms and are new therapeutic targets for treatment of vascular diseases.


Biochemical and Biophysical Research Communications | 1989

Two distinct types of endothelin receptors are present on chick cardiac membranes

Hirotoshi Watanabe; Hitoshi Miyazaki; Motohiro Kondoh; Yasushi Masuda; Sadao Kimura; Masashi Yanagisawa; Tomoh Masaki; Kazuo Murakami

Competitive displacement experiments of 125I-endothelin (ET)-1, -2, or -3 binding to chick cardiac membranes were performed with unlabeled ET-1, -2, -3, and sarafotoxin S6b (STX) as competitors. 125I-ET-1 and -2 binding was competitively inhibited by increasing concentrations of these unlabeled peptides in the same order; i.e. ET-2 greater than or equal to ET-1 greater than ET-3 greater than STX. In contrast, the order of potency in displacing 125I-ET-3 binding was ET-3 greater than ET-2 greater than or equal to ET-1 greater than STX. Affinity labeling of the membranes by cross-linking with 125I-ET-1 and -2 via disuccinimidyl tartarate yielded one major specific band with an apparent Mr = 53,000 by sodium dodecyl sulfate-polyacrylamide gel electrophoresis followed by autoradiography. On the other hand, affinity labeling with 125I-ET-3 showed that two major and one minor bands of Mr = 34,000, 46,000, and 53,000, respectively, were specifically labeled. These results indicate the presence of two distinct types of ET receptors, one of which has higher affinity for ET-1 and -2 than ET-3 and the other is conversely ET-3-preferring.


American Journal of Nephrology | 2010

Indoxyl Sulfate Upregulates Expression of ICAM-1 and MCP-1 by Oxidative Stress-Induced NF-ĸB Activation

Zohra Tumur; Hidehisa Shimizu; Atsushi Enomoto; Hitoshi Miyazaki; Toshimitsu Niwa

Background/Aim: Indoxyl sulfate, a uremic toxin, is considered a risk factor for cardiovascular disease (CVD) in chronic kidney disease (CKD). The present study aimed to determine whether indoxyl sulfate increases the expression of intercellular adhesion molecule-1 (ICAM-1) and monocyte chemotactic protein-1 (MCP-1) by reactive oxygen species (ROS)-induced activation of nuclear factor-ĸB (NF-ĸB) in vascular endothelial cells. Methods: Human umbilical vein endothelial cells (HUVEC) were incubated with indoxyl sulfate. The expression of ICAM-1 and MCP-1 in HUVEC was analyzed by quantitative reverse transcription-polymerase chain reaction (RT-PCR) and Western blotting. Phospho-NF-ĸB p65 (Ser 536), an active form of the NF-ĸB subunit, was determined by Western blotting. Results: Indoxyl sulfate significantly increased the mRNA expression of ICAM-1 and MCP-1 in HUVEC in a time- and concentration-dependent manner. Inhibitors of NF-ĸB (ammonium pyrrolidinedithiocarbamate and isohelenin) and an antioxidant (N-acetyl-L-cysteine) suppressed the indoxyl sulfate-induced expression of ICAM-1 and MCP-1 in HUVEC. Indoxyl sulfate increased phospho- NF-ĸB p65 in HUVEC, and N-acetyl-L-cysteine suppressed it. Conclusions: Indoxyl sulfate upregulates the expression of ICAM-1 and MCP-1 by ROS-induced activation of NF-ĸB in vascular endothelial cells. Thus, indoxyl sulfate may play an important role in the development of CVD in CKD by increasing the endothelial expression of ICAM-1 and MCP-1.


Circulation | 1998

Angiotensin Blockade Inhibits Activation of Mitogen-Activated Protein Kinases in Rat Balloon-Injured Artery

Shokei Kim; Yasukatsu Izumi; Masahiko Yano; Akinori Hamaguchi; Katsuyuki Miura; Shinya Yamanaka; Hitoshi Miyazaki; Hiroshi Iwao

BACKGROUND The effect of balloon injury on the arterial signal transduction pathway has not been examined. In vitro studies show that extracellular signal-regulated kinases (ERKs) and c-Jun NH2-terminal kinases (JNKs), belonging to the mitogen-activated protein kinase (MAPK) family, play a critical role in the activation of transcription factor activator protein-1 (AP-1) and cell proliferation or apoptosis. However, the activation and role of MAPKs in vascular diseases in vivo remain to be determined. Therefore, we examined the effect of balloon injury on arterial MAPKs and the possible role of angiotensin II. METHODS AND RESULTS Arterial JNK and ERK activities were measured by in-gel kinase assay. AP-1 DNA binding activity was determined by gel mobility shift analysis. After balloon injury of rat carotid artery, JNK (p46JNK and p55JNK) and ERK (p44ERK and p42ERK) activities were increased as early as 2 minutes, reached their peak (6- to 18-fold) at 5 minutes, and thereafter rapidly declined to control levels. JNK and ERK activations were followed by a 3.9-fold increase in arterial AP-1 DNA binding activity, which contained c-Jun and c-Fos proteins. Arterial JNK activation at 2 or 5 minutes was remarkably suppressed by E4177 (an angiotensin AT1 receptor antagonist) and cilazapril (an ACE inhibitor). E4177 also prevented activation of ERKs by suppressing their tyrosine phosphorylation, whereas cilazapril failed to prevent such activation. The increased AP-1 DNA binding activity was significantly inhibited by both E4177 and cilazapril. CONCLUSIONS Arterial JNKs and ERKs are dramatically activated by balloon injury associated with the activation of the AP-1 complex. These MAPK activations, followed by AP-1 activation, are mediated at least in part by the AT1 receptor. Thus, activation of JNKs and ERKs may be responsible for balloon injury-induced neointima formation.


FEBS Letters | 1989

Two different forms of endothelin receptors in rat lung

Yasushi Masuda; Hitoshi Miyazaki; Motohiro Kondoh; Hirotoshi Watanabe; Masashi Yanagisawa; Tomoh Masaki; Kazuo Murakami

We provided evidence for the presence of two distinct types of rat endothelin (ET) receptors having different molecular masses by affinity labelling of rat lung membranes with 125I‐ET‐1, ET‐2 and ET‐3 and SDS‐PAGE followed by autoradiography. One type, which is 44 kDa has a higher affinity for ET‐1 and ‐2 than ET‐3, whereas the other type, which is 32 kDa, preferably interacts with ET‐3 rather than ET‐1 and ‐2.


Journal of Biological Chemistry | 2007

Nox1 redox signaling mediates oncogenic Ras-induced disruption of stress fibers and focal adhesions by down-regulating Rho.

Masahiro Shinohara; Wei-Hao Shang; Makoto Kubodera; Saori Harada; Junji Mitsushita; Masayoshi Kato; Hitoshi Miyazaki; Hideke Sumimoto; Tohru Kamata

Generation of reactive oxygen species (ROS) by Ras oncogene-induced NADPH oxidase (Nox) 1 is required for Ras transformation phenotypes including anchorage-independent growth, morphological transformation, and tumorigenesity, but the signaling mechanism downstream of Nox1 remains elusive. Rho is known to be a critical regulator of actin stress fiber formation. Nonetheless, Rho was reported to no longer couple to loss of actin stress fibers in Ras-transformed Swiss3T3 cells despite the elevation of Rho activity. In this study, however, we demonstrate that Rho is inactivated in K-Ras-transformed normal rat kidney cells, and that abrogation of Nox1-generated ROS by Nox1 small interference RNAs or diphenyleneiodonium restores Rho activation, suggesting that Nox1-generated oxidants mediate down-regulation of the Rho activity. This down-regulation involves oxidative inactivation of the low molecular weight protein-tyrosine phosphatase by Nox1-generated ROS and a subsequent elevation in the tyrosine-phosphorylated active form of p190RhoGAP, the direct target of the phosphatase. Furthermore, the decreased Rho activity leads to disruption of both actin stress fibers and focal adhesions in Ras-transformed cells. As for Rac1, Rac1 also appears to participate in the down-regulation of Rho via Nox1. Our discovery defines a mediating role of Nox1-redox signaling for Ras oncogene-induced actin cytoskeletal changes.


Biochemical and Biophysical Research Communications | 1992

The rat angiotensin II AT1A receptor couples with three different signal transduction pathways

Junji Ohnishi; Masami Ishido; Takeshi Shibata; Tadashi Inagami; Kazuo Murakami; Hitoshi Miyazaki

To examine whether the subpopulation of the rat type 1 angiotensin II (AII) receptor (AT1A) couples with a single or multiple signal transduction pathways, we constructed Chinese hamster ovary (CHO) cell lines producing the recombinant receptor. The expressed AT1A receptor exhibits typical pharmacological characteristics of the AT1 receptor, known to mediate the main physiological function of AII. Addition of AII to the CHO cells induced a rapid, transient increase in intracellular free Ca2+ concentrations ([Ca2+]i) followed by a lower, sustained phase. Nicardipine, a blocker of voltage-dependent L-type Ca2+ channels, attenuated the transient [Ca2+]i response and abolished the sustained phase. The transient phase was also reduced dose-dependently by the phospholipase C inhibitor neomycin. Furthermore, AII inhibited forskolin-evoked cAMP accumulation. These data suggest, although another subpopulation named AT1B is present, that the rat AT1A receptor can independently couple with all three signal transduction pathways known to be induced by AII: i.e., i) activation of phospholipase C resulting in InsP3 generation with a subsequent release of intracellularly stored Ca2+, ii) activation of dihydropyridine-sensitive voltage-dependent Ca2+ channels, and iii) inhibition of adenylate cyclase activity.


Hypertension | 2000

Angiotensin II Type 2 Receptors Stimulate Collagen Synthesis in Cultured Vascular Smooth Muscle Cells

Mizuo Mifune; Hiroyuki Sasamura; Ryoko Shimizu-Hirota; Hitoshi Miyazaki; Takao Saruta

Previously, we and others have shown that angiotensin II enhances vascular smooth muscle cell extracellular matrix synthesis via stimulation of the angiotensin II type 1 (AT1) receptor. Recently, expression of the type 2 (AT2) receptor has been confirmed in the adult vasculature, but its role has not yet been fully defined. The aim of the present study was to examine the effects of stimulation of AT2 receptors on collagen synthesis in vascular smooth muscle cells. Retroviral gene transfer was used to supplement adult vascular smooth muscle cells with AT2 receptors to mimic the vasculature in vivo. The treatment of these cells with the AT2 receptor agonist CGP42212A (10−7 mol/L) alone did not cause a significant change in p42/p44 MAP kinase activity but caused a modest (30% to 50%) decrease in protein tyrosine phosphatase activity. Treatment with CGP42112A also caused a dose- and time-dependent increase in both cell-associated and secretory collagen synthesis (148±17% of control at 48 hours, P <0.05), which was completely inhibited by the AT2 receptor antagonist PD123319, unaffected by the AT1 receptor antagonist losartan, and attenuated by treatment with pertussis toxin or G&agr;i antisense oligonucleotides. Interestingly, studies in other cell lines demonstrated that CGP42112A caused similar results in transfected mesangial cells but had essentially opposite effects in fibroblasts (NIH-3T3-AT2). These results suggest that AT2 receptor stimulation can increase collagen synthesis in vascular smooth muscle cells via a G&agr;i-mediated mechanism and provide evidence for heterogeneity in the effects of AT2 receptor stimulation in different tissues.


European Journal of Pharmacology | 2011

Olive polyphenol hydroxytyrosol prevents bone loss

Keitaro Hagiwara; Tadashi Goto; Masahiro Araki; Hitoshi Miyazaki; Hiromi Hagiwara

Polyphenols reportedly exert physiological effects against diseases such as cancer, arteriosclerosis, hyperlipidemia and osteoporosis. The present study was designed to evaluate the effects of oleuropein, hydroxytyrosol and tyrosol, the major polyphenols in olives, on bone formation using cultured osteoblasts and osteoclasts, and on bone loss in ovariectomized mice. No polyphenols markedly affected the proliferation of osteoblastic MC3T3-E1 cells at concentrations up to 10μM. Oleuropein and hydroxytyrosol at 10 to 100μM had no effect on the production of type I collagen and the activity of alkaline phosphatase in MC3T3-E1 cells, but stimulated the deposition of calcium in a dose-dependent manner. In contrast, oleuropein at 10 to 100μM and hydroxytyrosol at 50 to 100μM inhibited the formation of multinucleated osteoclasts in a dose-dependent manner. Furthermore, both compounds suppressed the bone loss of trabecular bone in femurs of ovariectomized mice (6-week-old BALB/c female mice), while hydroxytyrosol attenuated H(2)O(2) levels in MC3T3-E1 cells. Our findings indicate that the olive polyphenols oleuropein and hydroxytyrosol may have critical effects on the formation and maintenance of bone, and can be used as effective remedies in the treatment of osteoporosis symptoms.


European Journal of Pharmacology | 2011

Hydroxytyrosol reduces intracellular reactive oxygen species levels in vascular endothelial cells by upregulating catalase expression through the AMPK–FOXO3a pathway

Houda Zrelli; Mieko Matsuoka; Shiho Kitazaki; Mokhtar Zarrouk; Hitoshi Miyazaki

Reactive oxygen species are critically involved in the endothelial dysfunction that contributes to atherosclerosis development. Hydroxytyrosol (HT), a main phenolic compound in olive oil and leaves from Olea europaea L., has antiatherogenic properties with powerful antioxidant activity. The present study verifies the antioxidant activity of HT on H2O2-induced intracellular reactive oxygen species in porcine pulmonary artery endothelial cells (VECs) and the involved molecular mechanisms. Incubation of VECs with HT prevented the increase in intracellular reactive oxygen species levels in the presence of H2O2. HT increased catalase mRNA, protein and activity. Catalase siRNA suppressed HT-dependent reduction of intracellular reactive oxygen species. HT increased both cytosolic and nuclear protein levels of forkhead transcription factor 3a (FOXO3a), as well as the phosphorylation of AMP-activated protein kinase (AMPK) that translocates FOXO3a to the nucleus. AMPK siRNA and a specific inhibitor suppressed HT-induced FOXO3a upregulation and catalase expression. Moreover, FOXO3a siRNA blocked HT-dependent increase in catalase expression. Taken together, our findings strongly demonstrate that HT positively regulates the antioxidant defense system in VECs by inducing the phosphorylation of AMPK with subsequent activation of FOXO3a and catalase expression, and provides a molecular basis for the prevention of cardiovascular diseases by HT.

Collaboration


Dive into the Hitoshi Miyazaki's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Nobuharu Fujii

Tokyo Metropolitan University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Takashi Shimizu

Obihiro University of Agriculture and Veterinary Medicine

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Akio Miyamoto

Obihiro University of Agriculture and Veterinary Medicine

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge