Hitoshi Nakayashiki
Kobe University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Hitoshi Nakayashiki.
Molecular Plant-microbe Interactions | 2005
Yanqing Wang; Yumiko Ohara; Hitoshi Nakayashiki; Yukio Tosa; Shigeyuki Mayama
Pseudomonas fluorescens FPT9601-T5 was originally identified as an endophytic plant growth-promoting rhizobacteria (PGPR) on tomato. To perform a molecular dissecttion of physiological and biochemical changes occurring in the host triggered by P. fluorescens FPT9601-T5 colonization, the model plant Arabidopsis was used in this study. Root colonization of Arabidopsis with P. fluorescens FPT9601-T5 promoted plant growth later than three weeks after inoculation and partially suppressed disease symptoms caused by Pseudomonas syringae pv. tomato DC3000, indicating that P. fluorescens FPT9601-T5 acted as a PGPR on Arabidopsis. To obtain a global view on transcript modification during the Arabidopsis-FPT9601-T5 interaction, we performed microarray analysis using Affymetrix Genechip probe arrays representing approximately 22,800 genes. The results showed that 95 and 105 genes were up- or down-regulated, respectively, more than twofold in FPT9601-T5-treated Arabidopsis plants as compared with control plants. Those up-regulated included genes involved in metabolism, signal transduction, and stress response. Noteworthy, upon FPT9601-T5 colonization, putative auxin-regulated genes and nodulin-like genes were up-regulated, and some ethylene-responsive genes were down-regulated. Our results suggest that P. fluorescens FPT9601-T5 triggered plant responses in a manner similar to known PGPR and, at least in some aspects, to rhizobia.
Molecular Plant-microbe Interactions | 2003
Naoki Kadotani; Hitoshi Nakayashiki; Yukio Tosa; Shigeyuki Mayama
Systematic analysis of RNA silencing was carried out in the blast fungus Magnaporthe oryzae (formerly Magnaporthe grisea) using the enhanced green fluorescence protein (eGFP) gene as a model. To assess the ability of RNA species to induce RNA silencing in the fungus, plasmid constructs expressing sense, antisense, and hairpin RNAs were introduced into an eGFP-expressing transformant. The fluorescence of eGFP in the transformant was silenced much more efficiently by hairpin RNA of eGFP than by other RNA species. In the silenced transformants, the accumulation of eGFP mRNA was drastically reduced, but no methylation of the promoter or coding region was involved in it. In addition, we found small interfering RNAs (siRNAs) only in the silenced transformants. Interestingly, the siRNAs consisted of RNA molecules with at least three different sizes ranging from 19 to 23 nucleotides, and all of them contained both sense and antisense strands of the eGFP gene. To our knowledge, this is the first demonstration in which different molecular sizes of siRNAs have been found in filamentous fungi. Overall, these results indicate that RNA silencing operates in M. oryzae, which gives us a new tool for genome-wide gene analysis in this fungus.
Molecular Microbiology | 2008
Quoc Bao Nguyen; Naoki Kadotani; Seiji Kasahara; Yukio Tosa; Shigeyuki Mayama; Hitoshi Nakayashiki
We developed an RNA‐silencing vector, pSilent‐Dual1 (pSD1), with a convergent dual promoter system that provides a high‐throughput platform for functional genomics research in filamentous fungi. In the pSD1 system, the target gene was designed to be transcribed as a chimeric RNA with enhanced green fluorescent protein (eGFP) RNA. This enabled us to efficiently screen the resulting transformants using GFP fluorescence as an indicator of gene silencing. A model study with the eGFP gene showed that pSD1‐based vectors induced gene silencing via the RNAi pathway with slightly lower efficiency than did hairpin eGFP RNA‐expressing vectors. To demonstrate the applicability of the pSD1 system for elucidating gene function in the rice‐blast fungus Magnaporthe oryzae, 37 calcium signalling‐related genes that include almost all known calcium‐signalling proteins in the genome were targeted for gene silencing by the vector. Phenotypic analyses of the silenced transformants showed that at least 26, 35 and 15 of the 37 genes examined were involved in hyphal growth, sporulation and pathogenicity, respectively, in M. oryzae. These included several novel findings such as that Pmc1‐, Spf1‐ and Neo1‐like Ca2+ pumps, calreticulin and calpactin heavy chain were essential for fungal pathogenicity.
Journal of General Plant Pathology | 2000
Hajime Katô; Masaaki Yamamoto; Tomona Yamaguchi-Ozaki; Hiroyuki Kadouchi; Yutaka Iwamoto; Hitoshi Nakayashiki; Yukio Tosa; Shigeyuki Mayama; Naoki Mori
Eighty-five Pyricularia isolates were collected from 29 host species of Gramineae, Bambusideae and Zingiberaceae plants sampled in Brazil, Uganda, Ivory Coast, India, Nepal, China, Indonesia and Japan. These isolates were compared on the basis of pathogenicity, mating ability and restriction fragment length polymorphisms with single-copy DNA probes. Based on the pathogenicity to eight differential gramineous plants, these isolates were classified into seven pathotypes: finger millet type, foxtail millet type, common millet type, rice type, crabgrass type, Italian ryegrass/ weeping lovegrass type, and non-cereal/grass type. Genetic variation among these isolates was assessed by RFLP analysis with two restriction enzymes and nine single-copy DNA probes isolated from a finger millet strain. An UPGMA dendrogram based on the RFLPs revealed that the 85 isolates could be classified into seven major groups. Isolates from cereal crops (finger millet, foxtail millet, common millet, wheat and rice) and a grass, Brachiaria plantaginea, were clustered into a single group. They were further divided into six subgroups corresponding to the pathotypes. Among cereal crop isolates only an isolate from pearl millet was located into a different group. The remaining isolates were clustered into five groups designated as the crabgrass group, the buffelgrass and jungle rice group, the rice cutgrass, knotroot bristlegrass and Setaria tomentosa group, the bamboo and bamboo grass group and the Zingiber mioga group. The isolates from cereal crops were generally capable of mating with finger millet strains and constituted a closed mating compatibility group. These results suggested that the isolates from cereal crops form a single group with a common ancestor although they are pathogenic to taxonomically diverse plants. A combined analysis of the pathogenicity and genetic similarity suggested that the transmission of M. grisea isolates occurs in natural agroecosystems between finger millet and Eleusine africana, goosegrass or Bambusa arundinacea, between foxtail millet and green bristlegrass, and between rice and tall fescue, Italian ryegrass, sweet vernalgrass, reed canarygrass or Oryza longistaminata.
Molecular Plant-microbe Interactions | 2004
Yasuomi Tada; Tomoyo Mori; Takeshi Shinogi; Nan Yao; Satsuki Takahashi; Shigeyuki Betsuyaku; Masaru Sakamoto; Pyoyun Park; Hitoshi Nakayashiki; Yukio Tosa; Shigeyuki Mayama
Nitric oxide (NO) acts as a signaling molecule in many cellular responses in plants and animals. Oat plants (Avena sativa L.) evoke the hypersensitive response (HR), which shares morphological and biochemical features with mammalian apoptosis, such as DNA laddering and heterochromatin condensation, in response to the avirulent crown rust fungus (Puccinia coronata f. sp. avenae). We examined the role of NO and reactive oxygen species (ROS) in the initiation of hypersensitive cell death, which is induced by direct contact with the pathogen, and apoptotic cell death in the adjacent cells. Cytofluorimetric analysis using the fluorescent NO probe DAF and the H2O2 probe DCF demonstrated that NO and H2O2 were generated simultaneously in primary leaves at an early stage of the defense response. The NO scavenger 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (cPTIO) markedly enhanced H2O2 accumulation detected by 3,3-diaminobenzidine staining and DCF, whereas treatment with the NO donor S-nitroso-N-acetylpenicillamine (SNAP) strongly suppressed it. Superoxide dismutase (SOD) increased NO accumulation, suggesting that endogenous NO may modulate the level of H2O2 by interacting with O2- in the HR lesion. Cytological observation showed that administration of cPTIO, SNAP, or SOD had no effect on elicitation of hypersensitive cell death, but clearly reduced heterochromatin condensation in the nearby cells and DNA laddering. These findings indicate that NO and ROS are not essential mediators for the initiation of hypersensitive cell death. However, NO and O2- but not H2O2 are required for the onset of apoptotic cell death in the adjacent cells, where excess NO may exert its anti-apoptotic function by regulating cellular redox state.
Molecular Microbiology | 2002
Kenichi Ikeda; Hitoshi Nakayashiki; Tomomori Kataoka; Hiroki Tamba; Yoko Hashimoto; Yukio Tosa; Shigeyuki Mayama
Repeat‐induced point mutation (RIP) is a process that detects DNA duplications and peppers their sequences with C:G to T:A transitions in the sexual phase of the life cycle. So far, this unique mechanism has been identified as a currently active process in only two fungal species, Neurospora crassa and Podospora anserina. To determine whether a RIP‐like process operates in the plant pathogenic fungus Magnaporthe grisea, the retrotransposon MAGGY and the hygromycin B phosphotransferase gene were introduced into the fungus as multiple transgenes and examined for sequence alterations after a cross. Frequent C:G to T:A transitions in the transgenes were found in the descendants, preferentially in (A/Tp)Cp(A/T) contexts, suggesting that a process similar to RIP functions in M. grisea. We also examined the sequence of another retrotransposon Pyret in six field isolates of M. grisea. Even though no perfect stage has been known in M. grisea under field conditions to date, RIP‐like transitions were found in all the field isolates tested. Interestingly, the frequency of the transitions mostly correlated with the fertility of the isolates examined under laboratory conditions. These results imply that the sexual cycle of this fungus exists or existed in the natural field context.
Molecular Genetics and Genomics | 2001
Kenichi Ikeda; Hitoshi Nakayashiki; M. Takagi; Yukio Tosa; Shigeyuki Mayama
Abstract. MAGGY is a gypsy-like retrotransposon isolated from the plant pathogenic fungus Magnaporthe grisea. The ability of various stresses to activate MAGGY was tested in the original and in a heterologous host (Colletotrichum lagenarium), using β-glucuronidase (GUS) as a reporter. The MAGGY promoter was activated in M. grisea by either heat shock, copper sulfate, or oxidative stress, but not by the antifungal substance p-coumaric acid. Transcriptional up-regulation of MAGGY RNA was also observed following heat shock and oxidative stress. The MAGGY promoter remained responsive to the above-mentioned stresses when transformed into a M. grisea isolate that had no endogenous MAGGY elements. In C. lagenarium, however, the MAGGY promoter showed only basal expression of GUS and no further up-regulation was induced by any of the stress treatments, suggesting that the stress-responding cis-element(s) in the MAGGY promoter is not functional in a wider range of fungi. The relationship between the activation of MAGGY by stress and phenotypic diversification in M. grisea, including variations in pathogenicity, is discussed.
Molecular Plant-microbe Interactions | 2001
Yasuomi Tada; Shingo Hata; Yoko Takata; Hitoshi Nakayashiki; Yukio Tosa; Shigeyuki Mayama
Cells in the primary leaves of oats displayed internucleosomal DNA cleavage in response to incompatible crown rust infection. DNA laddering also was evident in leaves treated with calcium ionophore A23187, nonspecific elicitors such as chitin and chitosan oligomers, and victorin, which functions as a specific elicitor in Pc-2/Vb containing oat leaves. The nuclei in a victorin-treated susceptible oat line were positive for the TUNEL assay. These elicitors clearly induced a 28-kDa nuclease (p28) in addition to three constitutive nucleases of 33, 24, and 22 kDa. Activation of p28 preceded the appearance of DNA laddering and possibly was mediated by de novo synthesis and/or cysteine protease activity. Pharmacological studies showed that the induction of DNA laddering was associated with oxidative stress, Ca2+ influx, and serine and cysteine proteases. Protein kinase and calmodulin activities did not seem to be involved in the induction of DNA laddering by victorin, whereas kinase-mediated signals were involved in DNA laddering induced by A23187. Protein kinase, calmodulin, G-protein activities, and Ca2+ influx, however, are involved in phytoalexin production. Our results imply that p28 is a possible nuclease candidate responsible for the induction of DNA laddering. The results also demonstrated that the mediators involved in the induction of apoptosis depended on the type of stimuli, whereas p28 and serine and cysteine proteases commonly are associated with each elicitor-induced apoptosis.
Phytopathology | 2000
J. Murakami; Yukio Tosa; T. Kataoka; R. Tomita; J. Kawasaki; Izumi Chuma; Y. Sesumi; Motoaki Kusaba; Hitoshi Nakayashiki; Shigeyuki Mayama
ABSTRACT A genetic cross was performed between a Setaria isolate (pathogenic on foxtail millet) and a Triticum isolate (pathogenic on wheat) of Magnaporthe grisea to elucidate genetic mechanisms of its specific parasitism toward wheat. A total of 80 F(1) progenies were obtained from 10 mature asci containing 8 ascospores. Lesions on wheat leaves produced by the F(1) progenies were classified into four types, which segregated in a 1:1:1:1 ratio. This result suggested that the pathogenicity of the F(1) population on wheat was controlled by two genes located at different loci. This idea was supported by backcross analyses. We designated these loci as Pwt1 and Pwt2. Cytological analyses revealed that Pwt1 and Pwt2 were mainly associated with the hypersensitive reaction and papilla formation, respectively.
Molecular Plant-microbe Interactions | 2002
Nan Yao; Satoshi Imai; Yasuomi Tada; Hitoshi Nakayashiki; Yukio Tosa; Pyoyun Park; Shigeyuki Mayama
We have examined the characteristics of cell death induced by pathogen infection in oats with respect to following hallmark apoptotic features: DNA laddering, chromatin condensation, and electron microscopic-terminal deoxynucleotidyl transferase-mediated UTP end labeling positive response. A wide range of plant pathogens representing different levels of parasitism in susceptible and resistant interactions were used for the inocula, which include (i) an obligate parasite, Puccinia coronata f. sp. avenae (the crown rust fungus); (ii) a facultative biotroph parasite, Magnaporthe grisea (the blast fungus); (iii) pathogenic bacteria, Pseudomonas syringae pv. atropurpurea and P. syringae pv. coronafaciens (the halo or stripe blights of oats); and (iv) Ryegrass mottle virus. Surprisingly, any of the pathogens used induced most of the apoptotic features in oat cells at and around the infection sites, indicating that apoptotic cell death is a common phenomenon in oats during pathogen attack. The localization and the timing of apoptotic cell death during a course of infection were, however, quite different depending on the interactions (compatible or incompatible) and the pathogens (fungi, bacteria, or viruses). Possible roles of apoptotic cell death in the susceptible and resistant interactions are discussed.