Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Hitoshi Takizawa is active.

Publication


Featured researches published by Hitoshi Takizawa.


Blood | 2012

Demand-adapted regulation of early hematopoiesis in infection and inflammation.

Hitoshi Takizawa; Steffen Boettcher; Markus G. Manz

During systemic infection and inflammation, immune effector cells are in high demand and are rapidly consumed at sites of need. Although adaptive immune cells have high proliferative potential, innate immune cells are mostly postmitotic and need to be replenished from bone marrow (BM) hematopoietic stem and progenitor cells. We here review how early hematopoiesis has been shaped to deliver efficient responses to increased need. On the basis of most recent findings, we develop an integrated view of how cytokines, chemokines, as well as conserved pathogen structures, are sensed, leading to divisional activation, proliferation, differentiation, and migration of hematopoietic stem and progenitor cells, all aimed at efficient contribution to immune responses and rapid reestablishment of hematopoietic homeostasis. We also outline how chronic inflammatory processes might impinge on hematopoiesis, potentially fostering hematopoietic stem cell diseases, and, how clinical benefit is and could be achieved by learning from nature.


Proceedings of the National Academy of Sciences of the United States of America | 2013

Engineering of a functional bone organ through endochondral ossification

Celeste Scotti; Elia Piccinini; Hitoshi Takizawa; Atanas Todorov; Paul E. Bourgine; Adam Papadimitropoulos; Andrea Barbero; Markus G. Manz; Ivan Martin

Embryonic development, lengthening, and repair of most bones proceed by endochondral ossification, namely through formation of a cartilage intermediate. It was previously demonstrated that adult human bone marrow-derived mesenchymal stem/stromal cells (hMSCs) can execute an endochondral program and ectopically generate mature bone. Here we hypothesized that hMSCs pushed through endochondral ossification can engineer a scaled-up ossicle with features of a “bone organ,” including physiologically remodeled bone, mature vasculature, and a fully functional hematopoietic compartment. Engineered hypertrophic cartilage required IL-1β to be efficiently remodeled into bone and bone marrow upon subcutaneous implantation. This model allowed distinguishing, by analogy with bone development and repair, an outer, cortical-like perichondral bone, generated mainly by host cells and laid over a premineralized area, and an inner, trabecular-like, endochondral bone, generated mainly by the human cells and formed over the cartilaginous template. Hypertrophic cartilage remodeling was paralleled by ingrowth of blood vessels, displaying sinusoid-like structures and stabilized by pericytic cells. Marrow cavities of the ossicles contained phenotypically defined hematopoietic stem cells and progenitor cells at similar frequencies as native bones, and marrow from ossicles reconstituted multilineage long-term hematopoiesis in lethally irradiated mice. This study, by invoking a “developmental engineering” paradigm, reports the generation by appropriately instructed hMSC of an ectopic “bone organ” with a size, structure, and functionality comparable to native bones. The work thus provides a model useful for fundamental and translational studies of bone morphogenesis and regeneration, as well as for the controlled manipulation of hematopoietic stem cell niches in physiology and pathology.


Annual Review of Immunology | 2013

Human Hemato-Lymphoid System Mice: Current Use and Future Potential for Medicine

Anthony Rongvaux; Hitoshi Takizawa; Till Strowig; Tim Willinger; Elizabeth E. Eynon; Richard A. Flavell; Markus G. Manz

To directly study complex human hemato-lymphoid system physiology and respective system-associated diseases in vivo, human-to-mouse xenotransplantation models for human blood and blood-forming cells and organs have been developed over the past three decades. We here review the fundamental requirements and the remarkable progress made over the past few years in improving these systems, the current major achievements reached by use of these models, and the future challenges to more closely model and study human health and disease and to achieve predictive preclinical testing of both prevention measures and potential new therapies.


Proceedings of the National Academy of Sciences of the United States of America | 2011

Human thrombopoietin knockin mice efficiently support human hematopoiesis in vivo

Anthony Rongvaux; Tim Willinger; Hitoshi Takizawa; Chozhavendan Rathinam; Wojtek Auerbach; Andrew J. Murphy; David M. Valenzuela; George D. Yancopoulos; Elizabeth E. Eynon; Sean Stevens; Markus G. Manz; Richard A. Flavell

Hematopoietic stem cells (HSCs) both self-renew and give rise to all blood cells for the lifetime of an individual. Xenogeneic mouse models are broadly used to study human hematopoietic stem and progenitor cell biology in vivo. However, maintenance, differentiation, and function of human hematopoietic cells are suboptimal in these hosts. Thrombopoietin (TPO) has been demonstrated as a crucial cytokine supporting maintenance and self-renewal of HSCs. We generated RAG2−/−γc−/− mice in which we replaced the gene encoding mouse TPO by its human homolog. Homozygous humanization of TPO led to increased levels of human engraftment in the bone marrow of the hosts, and multilineage differentiation of hematopoietic cells was improved, with an increased ratio of myelomonocytic verus lymphoid lineages. Moreover, maintenance of human stem and progenitor cells was improved, as demonstrated by serial transplantation. Therefore, RAG2−/−γc−/− TPO-humanized mice represent a useful model to study human hematopoiesis in vivo.


Proceedings of the National Academy of Sciences of the United States of America | 2011

Transgenic expression of human signal regulatory protein alpha in Rag2−/−γc−/− mice improves engraftment of human hematopoietic cells in humanized mice

Till Strowig; Anthony Rongvaux; Chozhavendan Rathinam; Hitoshi Takizawa; Chiara Borsotti; William M. Philbrick; Elizabeth E. Eynon; Markus G. Manz; Richard A. Flavell

Transplantation of human hematopoietic stem cells into severely immunocompromised newborn mice allows the development of a human hematopoietic and immune system in vivo. NOD/scid/γc−/− (NSG) and BALB/c Rag2−/−γc−/− mice are the most commonly used mouse strains for this purpose and a number of studies have demonstrated the high value of these model systems in areas spanning from basic to translational research. However, limited cross-reactivity of many murine cytokines on human cells and residual host immune function against the xenogeneic grafts results in defective development and maintenance of human cells in vivo. Whereas NSG mice have higher levels of absolute human engraftment than similar mice on a BALB/c background, they have a shorter lifespan and NOD ES cells are unsuitable for the complex genetic engineering that is required to improve human hematopoiesis and immune responses by transgenesis or knockin of human genes. We have generated mice that faithfully express a transgene of human signal regulatory protein alpha (SIRPa), a receptor that negatively regulates phagocytosis, in Rag2−/−γc−/− mice on a mixed 129/BALB/c background, which can easily be genetically engineered. These mice allow significantly increased engraftment and maintenance of human hematopoietic cells reaching levels comparable to NSG mice. Furthermore, we found improved functionality of the human immune system in these mice. In summary, hSIRPa-transgenic Rag2−/−γc−/− mice represent a unique mouse strain supporting high levels of human cell engraftment, which can easily be genetically manipulated.


Journal of Experimental Medicine | 2014

BRAF-V600E expression in precursor versus differentiated dendritic cells defines clinically distinct LCH risk groups

Marie-Luise Berres; Karen Phaik Har Lim; Tricia L. Peters; Jeremy Price; Hitoshi Takizawa; Hélène Salmon; Juliana Idoyaga; Albert Ruzo; Philip J. Lupo; M. John Hicks; Albert Shih; Stephen J. Simko; Harshal Abhyankar; Rikhia Chakraborty; Marylene Leboeuf; Monique F. Beltrao; Sergio A. Lira; Kenneth Matthew Heym; Björn E. Clausen; Venetia Bigley; Matthew Collin; Markus G. Manz; Kenneth L. McClain; Miriam Merad; Carl E. Allen

The Rockefeller University Press


Journal of Immunology | 2012

Cutting Edge: LPS-Induced Emergency Myelopoiesis Depends on TLR4-Expressing Nonhematopoietic Cells

Steffen Boettcher; Patrick Ziegler; Michael A. Schmid; Hitoshi Takizawa; Nico van Rooijen; Manfred Kopf; Mathias Heikenwalder; Markus G. Manz

30.00 J. Exp. Med. 2014 Vol. 211 No. 4 669-683 www.jem.org/cgi/doi/10.1084/jem.20130977 669 Langerhans cell histiocytosis (LCH) is characterized by inflammatory lesions that include pathological langerin+ DCs. LCH has pleotropic clinical presentations ranging from single lesions cured by curettage to potentially fatal multisystem disease. The first descriptions of LCH, including Hand-Schüller-Christian disease and Letter-Siwe disease, were based on anatomical location and extent of the lesions (Arceci, 1999). The diagnosis of high-risk LCH, defined by involvement of “risk organs” which include BM, liver, and spleen, conferred mortality rates >20%, where patients with disease limited to non-risk organs (low-risk LCH) had nearly 100% survival, CORRESPONDENCE Carl Allen: [email protected] OR Miriam Merad: [email protected]


Journal of Clinical Investigation | 2010

Lnk regulates integrin αIIbβ3 outside-in signaling in mouse platelets, leading to stabilization of thrombus development in vivo

Hitoshi Takizawa; Satoshi Nishimura; Naoya Takayama; Atsushi Oda; Hidekazu Nishikii; Yohei Morita; Sei Kakinuma; Satoshi Yamazaki; Satoshi Okamura; Noriko Tamura; Shinya Goto; Akira Sawaguchi; Ichiro Manabe; Kiyoshi Takatsu; Hiromitsu Nakauchi; Satoshi Takaki; Koji Eto

Systemic bacterial infection is rapidly recognized as an emergency state leading to neutrophil release into the circulation and increased myeloid cell production within the bone marrow. However, the mechanisms of sensing infection and subsequent translation into emergency myelopoiesis have not been defined. In this study, we demonstrate in vivo in mice that, surprisingly, selective TLR4 expression within the hematopoietic compartment fails to induce LPS-driven emergency myelopoiesis. In contrast, TLR4-expressing nonhematopoietic cells are indispensable for LPS-induced, G-CSF–mediated myelopoietic responses. Furthermore, LPS-induced emergency myelopoiesis is independent of intact IL-1RI signaling and, thus, does not require inflammasome activation. Collectively, our findings reveal a key and nonredundant role for nonhematopoietic compartment pathogen sensing that is subsequently translated into cytokine release for enhanced, demand-adapted myeloid cell production.


Development | 2014

The analysis, roles and regulation of quiescence in hematopoietic stem cells

Ayako Nakamura-Ishizu; Hitoshi Takizawa; Toshio Suda

The nature of the in vivo cellular events underlying thrombus formation mediated by platelet activation remains unclear because of the absence of a modality for analysis. Lymphocyte adaptor protein (Lnk; also known as Sh2b3) is an adaptor protein that inhibits thrombopoietin-mediated signaling, and as a result, megakaryocyte and platelet counts are elevated in Lnk-/- mice. Here we describe an unanticipated role for Lnk in stabilizing thrombus formation and clarify the activities of Lnk in platelets transduced through integrin alphaIIbbeta3-mediated outside-in signaling. We equalized platelet counts in wild-type and Lnk-/- mice by using genetic depletion of Lnk and BM transplantation. Using FeCl3- or laser-induced injury and in vivo imaging that enabled observation of single platelet behavior and the multiple steps in thrombus formation, we determined that Lnk is an essential contributor to the stabilization of developing thrombi within vessels. Lnk-/- platelets exhibited a reduced ability to fully spread on fibrinogen and mediate clot retraction, reduced tyrosine phosphorylation of the beta3 integrin subunit, and reduced binding of Fyn to integrin alphaIIbbeta3. These results provide new insight into the mechanism of alphaIIbbeta3-based outside-in signaling, which appears to be coordinated in platelets by Lnk, Fyn, and integrins. Outside-in signaling modulators could represent new therapeutic targets for the prevention of cardiovascular events.


Blood | 2011

Bone marrow dendritic cell progenitors sense pathogens via Toll-like receptors and subsequently migrate to inflamed lymph nodes.

Michael A. Schmid; Hitoshi Takizawa; Dior Baumjohann; Yasuyuki Saito; Markus G. Manz

Tissue homeostasis requires the presence of multipotent adult stem cells that are capable of efficient self-renewal and differentiation; some of these have been shown to exist in a dormant, or quiescent, cell cycle state. Such quiescence has been proposed as a fundamental property of hematopoietic stem cells (HSCs) in the adult bone marrow, acting to protect HSCs from functional exhaustion and cellular insults to enable lifelong hematopoietic cell production. Recent studies have demonstrated that HSC quiescence is regulated by a complex network of cell-intrinsic and -extrinsic factors. In addition, detailed single-cell analyses and novel imaging techniques have identified functional heterogeneity within quiescent HSC populations and have begun to delineate the topological organization of quiescent HSCs. Here, we review the current methods available to measure quiescence in HSCs and discuss the roles of HSC quiescence and the various mechanisms by which HSC quiescence is maintained.

Collaboration


Dive into the Hitoshi Takizawa's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge