Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Hiu Wing Cheung is active.

Publication


Featured researches published by Hiu Wing Cheung.


Proceedings of the National Academy of Sciences of the United States of America | 2008

Highly parallel identification of essential genes in cancer cells

Biao Luo; Hiu Wing Cheung; Aravind Subramanian; Tanaz Sharifnia; Michael Okamoto; Xiaoping Yang; Greg Hinkle; Jesse S. Boehm; Rameen Beroukhim; Barbara A. Weir; Craig H. Mermel; David A. Barbie; Tarif Awad; Xiaochuan Zhou; Tuyen Nguyen; Bruno Piqani; Cheng Li; Todd R. Golub; Matthew Meyerson; Nir Hacohen; William C. Hahn; Eric S. Lander; David M. Sabatini; David E. Root

More complete knowledge of the molecular mechanisms underlying cancer will improve prevention, diagnosis and treatment. Efforts such as The Cancer Genome Atlas are systematically characterizing the structural basis of cancer, by identifying the genomic mutations associated with each cancer type. A powerful complementary approach is to systematically characterize the functional basis of cancer, by identifying the genes essential for growth and related phenotypes in different cancer cells. Such information would be particularly valuable for identifying potential drug targets. Here, we report the development of an efficient, robust approach to perform genome-scale pooled shRNA screens for both positive and negative selection and its application to systematically identify cell essential genes in 12 cancer cell lines. By integrating these functional data with comprehensive genetic analyses of primary human tumors, we identified known and putative oncogenes such as EGFR, KRAS, MYC, BCR-ABL, MYB, CRKL, and CDK4 that are essential for cancer cell proliferation and also altered in human cancers. We further used this approach to identify genes involved in the response of cancer cells to tumoricidal agents and found 4 genes required for the response of CML cells to imatinib treatment: PTPN1, NF1, SMARCB1, and SMARCE1, and 5 regulators of the response to FAS activation, FAS, FADD, CASP8, ARID1A and CBX1. Broad application of this highly parallel genetic screening strategy will not only facilitate the rapid identification of genes that drive the malignant state and its response to therapeutics but will also enable the discovery of genes that participate in any biological process.


Proceedings of the National Academy of Sciences of the United States of America | 2011

Systematic investigation of genetic vulnerabilities across cancer cell lines reveals lineage-specific dependencies in ovarian cancer

Hiu Wing Cheung; Glenn S. Cowley; Barbara A. Weir; Jesse S. Boehm; Scott F. Rusin; Justine A. Scott; Alexandra East; Levi D. Ali; Patrick H. Lizotte; Terence C. Wong; Guozhi Jiang; Jessica Hsiao; Craig H. Mermel; Gad Getz; Jordi Barretina; Shuba Gopal; Pablo Tamayo; Joshua Gould; Aviad Tsherniak; Nicolas Stransky; Biao Luo; Yin Ren; Ronny Drapkin; Sangeeta N. Bhatia; Jill P. Mesirov; Levi A. Garraway; Matthew Meyerson; Eric S. Lander; David E. Root; William C. Hahn

A comprehensive understanding of the molecular vulnerabilities of every type of cancer will provide a powerful roadmap to guide therapeutic approaches. Efforts such as The Cancer Genome Atlas Project will identify genes with aberrant copy number, sequence, or expression in various cancer types, providing a survey of the genes that may have a causal role in cancer. A complementary approach is to perform systematic loss-of-function studies to identify essential genes in particular cancer cell types. We have begun a systematic effort, termed Project Achilles, aimed at identifying genetic vulnerabilities across large numbers of cancer cell lines. Here, we report the assessment of the essentiality of 11,194 genes in 102 human cancer cell lines. We show that the integration of these functional data with information derived from surveying cancer genomes pinpoints known and previously undescribed lineage-specific dependencies across a wide spectrum of cancers. In particular, we found 54 genes that are specifically essential for the proliferation and viability of ovarian cancer cells and also amplified in primary tumors or differentially overexpressed in ovarian cancer cell lines. One such gene, PAX8, is focally amplified in 16% of high-grade serous ovarian cancers and expressed at higher levels in ovarian tumors. Suppression of PAX8 selectively induces apoptotic cell death of ovarian cancer cells. These results identify PAX8 as an ovarian lineage-specific dependency. More generally, these observations demonstrate that the integration of genome-scale functional and structural studies provides an efficient path to identify dependencies of specific cancer types on particular genes and pathways.


Oncogene | 2004

Identification of a novel function of Twist, a bHLH protein, in the development of acquired taxol resistance in human cancer cells

Xianghong Wang; Ming-Tat Ling; Xin Yuan Guan; Sai Wah Tsao; Hiu Wing Cheung; Davy T. Lee; Yc Wong

Taxol is one of the widely used chemotherapeutic drugs against many types of human cancer. While it is considered as one of the most effective anticancer drugs, treatment failure often occurs due to development of acquired resistance. Therefore, it is important to understand the molecular mechanisms responsible for the development of drug resistance. Although it is generally believed that taxol induces cell death through interfering with microtubules leading to mitotic arrest, recent evidence has suggested that taxol-induced cell death also occurs through pathways independent of either microtubule or mitotic arrest. In this study, we report the identification of a novel role for TWIST, a basic helix–loop–helix protein, which plays a central role in cell type determination and differentiation, during generation of acquired resistance to taxol in a nasopharyngeal carcinoma cell line, HNE1-T3, using comparative genome hybridization (CGH) and subsequent RT–PCR and Western blotting. We found that upregulation of TWIST was associated with cellular resistance to taxol but not other drugs with different mechanisms of action. The fact that increased TWIST protein levels were also associated with another microtubule-targeting anticancer drug, vincristine, in four types of human cancer including nasopharyngeal, bladder, ovarian and prostate, indicates that it may play a central role in the resistance to microtubule-disrupting agents. In addition, ectopic expression of TWIST into human cancer cells also led to increased resistance to both taxol and vincristine. Our results indicate a novel mechanism that leads to resistance to microtubule-disrupting anticancer drugs through upregulation of TWIST. Our evidence provides a therapeutic strategy to overcome acquired resistance through inactivation of TWIST expression in human cancer.


Clinical Cancer Research | 2007

Garlic-Derived S-allylmercaptocysteine Is a Novel In vivo Antimetastatic Agent for Androgen-Independent Prostate Cancer

Edward W. Howard; Ming-Tat Ling; Chee Wai Chua; Hiu Wing Cheung; Xianghong Wang; Yong-Chuan Wong

Purpose: There is epidemiologic evidence that high garlic consumption decreases the incidence of prostate cancer, and compounds isolated from garlic have been shown to have cancer-preventive and tumor-suppressive effects. Recent in vitro studies in our laboratory have shown that garlic-derived organosulfur compound S-allylmercaptocysteine suppresses invasion and cell motility of androgen-independent prostate cancer cells via the up-regulation of cell-adhesion molecule E-cadherin. S-allylmercaptocysteine is therefore a potential antimetastatic drug with broad clinical applications that we tested in vivo for the first time in this study. Experimental Design: We used a newly established fluorescent orthotopic androgen-independent prostate cancer mouse model to assess the ability of S-allylmercaptocysteine to inhibit tumor growth and dissemination. Results: We showed that oral S-allylmercaptocysteine not only inhibited the growth of primary tumors by up to 71% (P < 0.001) but also reduced the number of lung and adrenal metastases by as much as 85.5% (P = 0.001) without causing notable toxicity. This metastatic suppression was accompanied by a 91% reduction of viable circulating tumor cells (P = 0.041), suggesting that S-allylmercaptocysteine prevents dissemination by decreasing tumor cell intravasation. Conclusions: Our results provide in vivo evidence supporting the potential use of S-allylmercaptocysteine as an E-cadherin up-regulating antimetastatic agent for the treatment of androgen-independent prostate cancer. This is the first report of the in vivo antimetastatic properties of garlic, which may also apply to other cancer types.


Cancer Research | 2006

Inactivation of Human MAD2B in Nasopharyngeal Carcinoma Cells Leads to Chemosensitization to DNA-Damaging Agents

Hiu Wing Cheung; Abel C.S. Chun; Qi Wang; Wen Deng; Liang Hu; Xin Yuan Guan; John M. Nicholls; Ming-Tat Ling; Yc Wong; Sai Wah Tsao; Dong-Yan Jin; Xianghong Wang

Rev7p has been suggested to play an important role in regulating DNA damage response in yeast, and recently, the human homologue (i.e., MAD2B) has been identified, which shares significant homology to the mitotic checkpoint protein MAD2. In this study, we investigated whether MAD2B played a key role in cellular sensitivity to DNA-damaging anticancer drugs by suppressing its expression using RNA interference in nasopharyngeal carcinoma cells. Using colony formation assay, we found that suppression of MAD2B conferred hypersensitivity to a range of DNA-damaging agents, especially DNA cross-linkers, such as cisplatin, and gamma-irradiation. This effect was associated with reduced frequencies of spontaneous and drug-induced mutations, elevated phosphorylation of histone H2AX, and markedly increased chromosomal aberrations in response to DNA damage. In addition, there was also a significant decrease in cisplatin-induced sister chromatid exchange rate, a marker for homologous recombination-mediated post-replication repair in MAD2B-depleted cells. These results indicate that MAD2B may be a key factor in regulating cellular response to DNA damage in cancer cells. Our findings reveal a novel strategy for cancer therapy, in which cancer cells are sensitized to DNA-damaging anticancer drugs through inactivation of the MAD2B gene.


Cancer Research | 2005

Mitotic arrest deficient 2 expression induces chemosensitization to a DNA-damaging agent, cisplatin, in nasopharyngeal carcinoma cells

Hiu Wing Cheung; Dong-Yan Jin; Ming-Tat Ling; Yong-Chuan Wong; Qi Wang; Sai Wah Tsao; Xianghong Wang

Recently, mitotic arrest deficient 2 (MAD2)-mediated spindle checkpoint is shown to induce mitotic arrest in response to DNA damage, indicating overlapping roles of the spindle checkpoint and DNA damage checkpoint. In this study, we investigated if MAD2 played a part in cellular sensitivity to DNA-damaging agents, especially cisplatin, and whether it was regulated through mitotic checkpoint. Using nine nasopharyngeal carcinoma (NPC) cell lines, we found that decreased MAD2 expression was correlated with cellular resistance to cisplatin compared with the cell lines with high levels of MAD2. Exogenous MAD2 expression in NPC cells also conferred sensitivity to DNA-damaging agents especially cisplatin but not other anticancer drugs with different mechanisms of action. The increased cisplatin sensitivity in MAD2 transfectants was associated with mitotic arrest and activation of apoptosis pathway evidenced by the increased mitotic index and apoptosis rate as well as decreased Bcl-2 and Bax ratio and expression of cleaved poly(ADP-ribose) polymerase and caspase 3. Our results indicate that the MAD2-induced chemosensitization to cisplatin in NPC cells is mediated through the induction of mitotic arrest, which in turn activates the apoptosis pathway. Our evidence further confirms the previous hypothesis that spindle checkpoint plays an important part in DNA damage-induced cell cycle arrest and suggests a novel role of MAD2 in cellular sensitivity to cisplatin.


Molecular Carcinogenesis | 2005

Epigenetic inactivation of CHFR in nasopharyngeal carcinoma through promoter methylation

Hiu Wing Cheung; Yick-Pang Ching; John M. Nicholls; Ming-Tat Ling; Yc Wong; Nick Hui; Annie Cheung; Sai Wah Tsao; Qi Wang; P.W. Yeun; Kwok Wai Lo; Dong-Yan Jin; Xianghong Wang

Chromosomal instability (CIN) is a cytogenetic hallmark of human cancers. Increasing evidence suggests that impairment of mitotic checkpoint is causally associated with CIN. CHFR is one of the mitotic checkpoint regulators and it delays chromosome condensation in response to mitotic stress. Epigenetic inactivation of CHFR through promoter CpG hypermethylation may lead to CIN and has been reported in several human cancers. In this study, we investigated the CHFR gene expression in a panel of nasopharyngeal carcinoma (NPC), prostate, ovarian, and breast cancer cell lines. We found that the expression of CHFR mRNA was significantly decreased or undetectable in all eight NPC cell lines as well as three human NPC xenografts, whereas non‐malignant nasopharyngeal cell lines and other cancer cell lines tested expressed CHFR at relatively high levels. Hypermethylation of CHFR promoter region was also strongly correlated with decreased CHFR expression in NPC cell lines and xenografts. Treatment with a methyltransferase inhibitor, 5‐aza‐2′‐deoxycytidine, led to restoration of CHFR expression in NPC cell lines. More importantly, hypermethylation of CHFR promoter region was detected in 61.1% (22 out of 36) of primary NPC tumors while it was absent in non‐malignant tissues. These findings suggest that downregulation of CHFR is a common event in NPC cells which may be due to hypermethylation of the gene promoter region.


Frontiers in Bioscience | 2008

Mitotic checkpoint defects in human cancers and their implications to chemotherapy

Xianghong Wang; Hiu Wing Cheung; Abel C.S. Chun; Dong-Yan Jin; Y.C. Wong

The mitotic checkpoint, also known as spindle assembly checkpoint, is to ensure accurate chromosome segregation by inducing mitotic arrest when errors occur in the spindle structure or in the alignment of the chromosomes on the spindle. Loss of mitotic checkpoint control is a common event in human cancer cells, which is thought to be responsible for chromosome instability frequently observed in cancer cells. Several reports have shown that cells with a defective mitotic checkpoint are more resistant to several types of anticancer drugs from microtubule disruptors to DNA damaging agents. In addition, inactivation of key mitotic checkpoint proteins such as BUB (budding uninhibited by benzimidazole) and MAD (mitotic arrest deficient ) is influential in drug resistance in mitotic checkpoint defective cancer cells. The mitotic checkpoint has also been linked to DNA damage response and a defective mitotic checkpoint confers cancer cells resistance to certain DNA damaging anticancer drugs. This review presents recent evidence on mitotic checkpoint defects in human cancers and their association with resistance to anticancer drugs. In addition, the clinical importance and potential therapeutic implications of targeting the mitotic checkpoint to reverse drug resistance in cancer cells are also discussed.


Proceedings of the National Academy of Sciences of the United States of America | 2014

In vivo multiplexed interrogation of amplified genes identifies GAB2 as an ovarian cancer oncogene.

Gavin P. Dunn; Hiu Wing Cheung; Pankaj K. Agarwalla; Sapana Thomas; Yulia Zektser; Alison M. Karst; Jesse S. Boehm; Barbara A. Weir; Aaron M. Berlin; Lihua Zou; Gad Getz; Joyce Liu; Michelle S. Hirsch; Francisca Vazquez; David E. Root; Rameen Beroukhim; Ronny Drapkin; William C. Hahn

Significance High-grade serous ovarian cancers are characterized by widespread gain and loss of copy number involving large numbers of genes; however, the functional consequences of many of these changes remain unclear. To determine which of the many amplified genes exhibited tumor-promoting behavior, we developed a novel in vivo method to systematically screen potential oncogenes for tumor formation. We identified GAB2, a signaling adaptor protein, as a potent oncogene that is also significantly amplified in ovarian and breast cancer. GAB2 overexpression activates the phosphatidylinositol 3-kinase (PI3K) pathway and confers sensitivity to PI3K pathway inhibition. These results credential GAB2 as a potent oncogene in ovarian cancer and emphasize the importance of PI3K signaling in this cancer. High-grade serous ovarian cancers are characterized by widespread recurrent copy number alterations. Although some regions of copy number change harbor known oncogenes and tumor suppressor genes, the genes targeted by the majority of amplified or deleted regions in ovarian cancer remain undefined. Here we systematically tested amplified genes for their ability to promote tumor formation using an in vivo multiplexed transformation assay. We identified the GRB2-associated binding protein 2 (GAB2) as a recurrently amplified gene that potently transforms immortalized ovarian and fallopian tube secretory epithelial cells. Cancer cell lines overexpressing GAB2 require GAB2 for survival and show evidence of phosphatidylinositol 3-kinase (PI3K) pathway activation, which was required for GAB2-induced transformation. Cell lines overexpressing GAB2 were as sensitive to PI3K inhibition as cell lines harboring mutant PIK3CA. Together, these observations nominate GAB2 as an ovarian cancer oncogene, identify an alternative mechanism to activate PI3K signaling, and underscore the importance of PI3K signaling in this cancer.


British Journal of Cancer | 2006

Role of MEK/ERK pathway in the MAD2-mediated cisplatin sensitivity in testicular germ cell tumour cells

Maggie K.L. Fung; Hiu Wing Cheung; Ming-Tat Ling; Annie L.M. Cheung; Y.C. Wong; Xianghong Wang

Testicular germ cell tumour (TGCT) is the most common malignancy in young males. Although most TGCTs are sensitive to cisplatin-based chemotherapy, significant numbers of TGCT patients still relapse and die each year because of the development of resistance to cisplatin. Previously, we first reported that a key regulator of the mitotic checkpoint, mitotic arrest deficient-2 (MAD2), was a mediator of cisplatin sensitivity in human cancer cells. In this study, we investigated whether MAD2 played a role in cellular sensitivity to cisplatin in TGCT cells and the underlying molecular mechanisms responsible. Using 10 TGCT cell lines, we found that increased MAD2 expression was correlated with cellular sensitivity to cisplatin, which was associated with activation of the MEK pathway. Treatment of cells expressing high levels of MAD2 with an MEK inhibitor, U0126, led to cellular protection against cisplatin-induced apoptosis. Inactivation of MAD2 by transfecting a dominant-negative construct in TGCT cells with high levels of MAD2 resulted in the suppression of MEK pathway and resistance to cisplatin-induced cell death. These results support previous suggestion on the involvement of mitotic checkpoint in DNA damage response in human cancer cells and demonstrate a possible molecular mechanism responsible for the MAD2-mediated sensitivity to cisplatin in TGCT cells. Our results also suggest that downregulation of MAD2 may be an indicator for identification of TGCT cancer cells that are potentially resistant to cisplatin-based therapy.

Collaboration


Dive into the Hiu Wing Cheung's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ming-Tat Ling

Queensland University of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

David E. Root

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Qi Wang

University of Hong Kong

View shared research outputs
Top Co-Authors

Avatar

Y.C. Wong

University of Hong Kong

View shared research outputs
Top Co-Authors

Avatar

Yc Wong

University of Hong Kong

View shared research outputs
Top Co-Authors

Avatar

Ronny Drapkin

Massachusetts Institute of Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge