Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Hnin Hnin Aung is active.

Publication


Featured researches published by Hnin Hnin Aung.


Journal of The American College of Nutrition | 2008

A dose-response study on the effects of purified lycopene supplementation on biomarkers of oxidative stress.

Sridevi Devaraj; Surekha Mathur; Arpita Basu; Hnin Hnin Aung; Vihas T. Vasu; Stuart A. Meyers; Ishwarlal Jialal

Objective: While tomato product supplementation, containing antioxidant carotenoids, including lycopene, decreases oxidative stress, the role of purified lycopene as an antioxidant remains unclear. Thus, we tested the effects of different doses of purified lycopene supplementation on biomarkers of oxidative stress in healthy volunteers. Methods: This was a double-blind, randomized, placebo-controlled trial, examining the effects of 8-week supplementation of purified lycopene, on plasma lycopene levels, biomarkers of lipid peroxidation {LDL oxidizability, malondialdehyde & hydroxynonenals (MDA & HNE), urinary F2-isoprostanes}, and markers of DNA damage in urine and lymphocytes. Healthy adults (n = 77, age ≥ 40 years), consumed a lycopene-restricted diet for 2 weeks, and were then randomized to receive 0, 6.5, 15, or 30 mg lycopene/ day for 8 weeks, while on the lycopene-restricted diet. Blood and urine samples were collected at the beginning and end of Week 2 of lycopene-restricted diet, and at end of Week 10 of the study. Results: Independent of the dose, plasma lycopene levels significantly increased in all lycopene supplemented groups versus placebo (p < 0.05). ANOVA revealed a significant decrease in DNA damage by the comet assay (p = 0.007), and a significant decrease in urinary 8-hydroxy deoxoguanosine (8-OHdG) at 8 weeks versus baseline (p = 0.0002), with 30 mg lycopene/day. No significant inter- or intra-group differences were noted for glucose, lipid profile, or other biomarkers of lipid peroxidation at any dose/time point. Conclusions: Thus, purified lycopene was bioavailable and was shown to decrease DNA oxidative damage and urinary 8-OHdG at the high dose.


Nature Reviews Nephrology | 2010

Role of triglyceride-rich lipoproteins in diabetic nephropathy

John C. Rutledge; Kit Fai Ng; Hnin Hnin Aung; Dennis W. Wilson

Diabetic nephropathy is an increasingly important cause of morbidity and mortality worldwide. A large body of evidence suggests that dyslipidemia has an important role in the progression of kidney disease in patients with diabetes. Lipids may induce renal injury by stimulating TGF-β, thereby inducing the production of reactive oxygen species and causing damage to the glomeruli and glomerular glycocalyx. Findings from basic and clinical studies strongly suggest that excess amounts of a variety of lipoproteins and lipids worsens diabetes-associated microvascular and macrovascular disease, increases glomerular injury, increases tubulointerstitial fibrosis, and accelerates the progression of diabetic nephropathy. The increasing prevalence of obesity, type 2 diabetes mellitus, and diabetic nephropathy means that interventions that can interrupt the pathophysiological cascade of events induced by lipoproteins and lipids could enable major life and cost savings. This Review discusses the structural, cellular, and microscopic findings associated with diabetic nephropathy and the influence of lipoproteins, specifically triglyceride-rich lipoproteins (TGRLs), on the development and perpetuation of diabetic nephropathy. Some of the accepted and hypothesized mechanisms of renal injury relating to TGRLs are also described.


Journal of Lipid Research | 2008

Angiotensin II increases vascular proteoglycan content preceding and contributing to atherosclerosis development

Fei Huang; Joel C. Thompson; Patricia G. Wilson; Hnin Hnin Aung; John C. Rutledge; Lisa R. Tannock

Angiotensin II (angII) is known to promote atherosclerosis; however, the mechanisms involved are not fully understood. To determine whether angII stimulates proteoglycan production and LDL retention, LDL receptor-deficient mice were infused with angII (1,000 ng/kg/min) or saline via osmotic minipumps. To control for the hypertensive effect of angII, a parallel group received norepinephrine (NE; 5.6 mg/kg/day). Arterial lipid accumulation was evaluated by measuring the retention rate of LDL in isolated carotid arteries perfused ex vivo. Mice infused with angII had increased vascular content of biglycan and perlecan and retained twice as much LDL as saline- or NE-infused mice, although no group developed atherosclerosis at this time. To determine whether this increase in biglycan and perlecan content predisposed to atherosclerosis development, mice were infused with angII, saline, or NE for 4 weeks, then pumps were removed and mice received an atherogenic Western diet for another 6 weeks. Mice that had received angII infusions had 3-fold increased atherosclerosis compared with mice that had received saline or NE, and apolipoprotein B colocalized with both proteoglycans. Thus, one mechanism by which angII promotes atherosclerosis is increased proteoglycan synthesis and increased arterial LDL retention, which precedes and contributes to atherosclerosis development.


American Journal of Physiology-heart and Circulatory Physiology | 2008

Triglyceride-rich lipoprotein lipolysis increases aggregation of endothelial cell membrane microdomains and produces reactive oxygen species

Limin Wang; Annapoorna R. Sapuri-Butti; Hnin Hnin Aung; Atul N. Parikh; John C. Rutledge

Triglyceride-rich lipoprotein (TGRL) lipolysis may provide a proinflammatory stimulus to endothelium. Detergent-resistant plasma membrane microdomains (lipid rafts) have a number of functions in endothelial cell inflammation. The mechanisms of TGRL lipolysis-induced endothelial cell injury were investigated by examining endothelial cell lipid rafts and production of reactive oxygen species (ROS). Lipid raft microdomains in human aortic endothelial cells were visualized by confocal microscopy with fluorescein isothiocyanate-labeled cholera toxin B as a lipid raft marker. Incubation of Atto565-labeled TGRL with lipid raft-labeled endothelial cells showed that TGRL colocalized with the lipid rafts, TGRL lipolysis caused clustering and aggregation of lipid rafts, and colocalization of TGRL remnant particles on the endothelial cells aggregated lipid rafts. Furthermore, TGRL lipolysis caused translocation of low-density lipoprotein receptor-related protein, endothelial nitric oxide synthase, and caveolin-1 from raft regions to nonraft regions of the membrane 3 h after treatment with TGRL lipolysis. TGRL lipolysis significantly increased the production of ROS in endothelial cells, and both NADPH oxidase and cytochrome P-450 inhibitors reduced production of ROS. Our studies suggest that alteration of lipid raft morphology and composition and ROS production could contribute to TGRL lipolysis-mediated endothelial cell injury.


Arteriosclerosis, Thrombosis, and Vascular Biology | 2013

Induction of ATF3 Gene Network by Triglyceride-Rich Lipoprotein Lipolysis Products Increases Vascular Apoptosis and Inflammation

Hnin Hnin Aung; Michael W. Lamé; Kishorchandra Gohil; Chung Il An; Dennis W. Wilson; John C. Rutledge

Objective—Elevation of triglyceride-rich lipoproteins (TGRLs) contributes to the risk of atherosclerotic cardiovascular disease. Our work has shown that TGRL lipolysis products in high physiological to pathophysiological concentrations cause endothelial cell injury; however, the mechanisms remain to be delineated. Approach and Results—We analyzed the transcriptional signaling networks in arterial endothelial cells exposed to TGRL lipolysis products. When human aortic endothelial cells in culture were exposed to TGRL lipolysis products, activating transcription factor 3 (ATF3) was identified as a principal response gene. Induction of ATF3 mRNA and protein was confirmed by quantitative reverse-transcription polymerase chain reaction and Western blot respectively. Immunofluorescence analysis showed that ATF3 accumulated in the nuclei of cells treated with lipolysis products. Nuclear expression of phosphorylated c-Jun N-terminal kinase (JNK), previously shown to be an initiator of the ATF3 signaling cascade, also was demonstrated. Small interfering RNA (siRNA)–mediated inhibition of ATF3 blocked lipolysis products–induced transcription of E-selectin and interleukin-8, but not interleukin-6 or nuclear factor-&kgr;B. c-Jun, a downstream protein in the JNK pathway, was phosphorylated, whereas expression of nuclear factor-&kgr;B–dependent JunB was downregulated. Additionally, JNK siRNA suppressed ATF3 and p-c-Jun protein expression, suggesting that JNK is upstream of the ATF3 signaling pathway. In vivo studies demonstrated that infusion of TGRL lipolysis products into wild-type mice induced nuclear ATF3 accumulation in carotid artery endothelium. ATF3−/− mice were resistant to vascular apoptosis precipitated by treatment with TGRL lipolysis products. Also peripheral blood monocytes isolated from postprandial humans had increased ATF3 expression as compared with fasting monocytes. Conclusions—This study demonstrates that TGRL lipolysis products activate ATF3-JNK transcription factor networks and induce endothelial cells inflammatory response.


Inhalation Toxicology | 2010

Exposure of mice to concentrated ambient particulate matter results in platelet and systemic cytokine activation.

Dennis W. Wilson; Hnin Hnin Aung; Michael W. Lamé; Laurel E. Plummer; Kent E. Pinkerton; Walter Ham; Michael J. Kleeman; Jeffrey W. Norris; Fern Tablin

Increasingly, evidence suggests a role for a systemic procoagulant state in the pathogenesis of cardiac dysfunction subsequent to inhalation of airborne particulate matter. The authors evaluated blood cell parameters and markers of platelet activation in mice exposed to concentrated ambient particulate matter (CAPs) from the San Joaquin Valley of California, a region with severe particulate matter (PM) pollution episodes. The authors exposed mice to an average of 88.5 μg/m3 of CAPs in a size range less than 2.5 μm for 6 h/day for 5 days per week for 2 weeks. Platelets were analyzed by flow cytometry for relative size, shape, aggregation, fibrinogen binding, P-selectin, and lysosomal-associated membrane protein-1 (LAMP-1) expression. Serum cytokines were analyzed by bead-based immunologic assays. CAPs-exposed mice had elevations in macrophage inflammatory protein (MIP)-1α, MIP-1β, interleukin (IL)-6, IL-10, tumor necrosis factor alpha (TNFα), macrophage colony-stimulating factor (M-CSF), granulocyte-macrophage colony-stimulating factor (GM-CSF), platelet-derived growth factor (PDGF)-bb, and RANTES (regulated upon activation, normally T-expressed, and presumably secreted). Platelets were the only peripheral blood cells that were significantly elevated in number in CAPs-exposed mice. Flow cytometric analysis of unstimulated platelets from CAPs-exposed mice indicated size and shape changes, and platelets from CAPs-exposed animals had a 54% increase in fibrinogen binding indicative of platelet priming. Stimulation of platelets by thrombin resulted in up-regulation of LAMP-1 expression in CAPs-exposed animals and an increased microparticle population relative to control animals. These findings demonstrate a systemic proinflammatory and procoagulant response to inhalation of environmentally derived fine and ultrafine PM and suggests a role for platelet activation in the cardiovascular and respiratory effects of particulate air pollution.


Journal of Immunology | 2009

Adenosine Blocks IFN-γ-Induced Phosphorylation of STAT1 on Serine 727 to Reduce Macrophage Activation

Kimberly E. Barnholt; Rama S. Kota; Hnin Hnin Aung; John C. Rutledge

Macrophages are activated by IFN-γ, a proinflammatory and proatherogenic cytokine that mediates its downstream effects primarily through STAT1. IFN-γ signaling induces phosphorylation of two STAT1 residues: Tyr701 (Y701), which facilitates dimerization, nuclear translocation, and DNA binding; and Ser727 (S727), which enables maximal STAT1 transcription activity. Immunosuppressive molecules such as adenosine in the cellular microenvironment can reduce macrophage inflammatory and atherogenic functions through receptor-mediated signaling pathways. We hypothesized that adenosine achieves these protective effects by interrupting IFN-γ signaling in activated macrophages. This investigation demonstrates that adding adenosine to IFN-γ-stimulated murine RAW 264.7 and human THP-1 macrophages results in unique modulation of STAT1 serine and tyrosine phosphorylation events. We show that adenosine inhibits IFN-γ-induced STAT1 S727 phosphorylation by >30% and phosphoserine-mediated transcriptional activity by 58% but has no effect on phosphorylation of Y701 or receptor-associated JAK tyrosine kinases. Inhibition of the adenosine A3 receptor with a subtype-specific antagonist (MRS 1191 in RAW 264.7 cells and MRS 1220 in THP-1 cells) reverses this adenosine suppressive effect on STAT1 phosphoserine status by 25–50%. Further, RAW 264.7 A3 receptor stimulation with Cl-IB-MECA reduces IFN-γ-induced STAT1 transcriptional activity by 45% and STAT1-dependent gene expression by up to 80%. These data suggest that A3 receptor signaling is key to adenosine-mediated STAT1 modulation and anti-inflammatory action in IFN-γ-activated mouse and human macrophages. Because STAT1 plays a key role in IFN-γ-induced inflammation and foam cell transformation, a better understanding of the mechanisms underlying STAT1 deactivation by adenosine may improve preventative and therapeutic approaches to vascular disease.


Physiological Genomics | 2011

Comparative gene responses to collected ambient particles in vitro: endothelial responses.

Hnin Hnin Aung; Michael W. Lamé; Kishorchandra Gohil; Guochun He; Michael S. Denison; John C. Rutledge; Dennis W. Wilson

Epidemiologic studies associate exposure to ambient particulate matter (APM) with increased cardiovascular mortality. Since both pulmonary inflammation and systemic circulation of ultrafine particles are hypothesized as initiating cardiovascular effects, we examined responses of potential target cells in vitro. Human aortic endothelial cells (HAEC) were exposed to 10 μg/ml fine and ultrafine APM collected in an urban setting in summer 2006 or winter 2007 in the San Joaquin Valley, California. RNA isolated after 3 h was analyzed with high-density oligonucleotide arrays. Summer APM treatment affected genes involved in xenobiotic and oxidoreductase activity, transcription factors, and inflammatory responses in HAEC, while winter APM had a robust xenobiotic but lesser inflammatory response. Real-time polymerase chain reaction analysis confirmed that particulate matter (PM)-treated HAEC increased mRNA levels of xenobiotic response enzymes CYP1A1, ALDH1A3, and TIPARP and cellular stress response transcription factor ATF3. Inflammatory response genes included E-selectin, PTGS2, CXCL-2 (MIP-2α), and CCL-2 (MCP-1). Multiplex protein assays showed secretion of IL-6 and MCP-1 by HAEC. Since induction of CYP1A1 is mediated through the ligand-activated aryl hydrocarbon receptor (AhR), we demonstrated APM induced AhR nuclear translocation by immunofluorescence and Western blotting and activation of the AhR response element using a luciferase reporter construct. Inhibitor studies suggest differential influences of polycyclic aromatic hydrocarbon signaling, ROS-mediated responses and endotoxin alter stress and proinflammatory endothelial cell responses. Our findings demonstrate gene responses correlated with current concepts that systemic inflammation drives cardiovascular effects of particulate air pollution. We also demonstrate a unique pattern of gene responses related to xenobiotic metabolism in PM-exposed HAEC.


Brain Research | 2008

Mice lacking α-tocopherol transfer protein gene have severe α-tocopherol deficiency in multiple regions of the central nervous system

Kishorchandra Gohil; Saji Oommen; Hung T. Quach; Vihas T. Vasu; Hnin Hnin Aung; Bettina C. Schock; Carroll E. Cross; Govind T. Vatassery

Ataxia with vitamin E deficiency is caused by mutations in alpha-tocopherol transfer protein (alpha-TTP) gene and it can be experimentally generated in mice by alpha-TTP gene inactivation (alpha-TTP-KO). This study compared alpha-tocopherol (alpha-T) concentrations of five brain regions and of four peripheral organs from 5 months old, male and female, wild-type (WT) and alpha-TTP-KO mice. All brain regions of female WT mice contained significantly higher alpha-T than those from WT males. alpha-T concentration in the cerebellum was significantly lower than that in other brain regions of WT mice. These sex and regional differences in brain alpha-T concentrations do not appear to be determined by alpha-TTP expression which was undetectable in all brain regions. All the brain regions of alpha-TTP-KO mice were severely depleted in alpha-T. The concentration of another endogenous antioxidant, total glutathione, was unaffected by gender but was decreased slightly but significantly in most brain regions of alpha-TTP-KO mice. The results show that both gender and the hepatic alpha-TTP, but not brain alpha-TTP gene expression are important in determining alpha-T concentrations within the brain. Interestingly, functional abnormality (ataxia) develops only very late in alpha-TTP-KO mice in spite of the severe alpha-tocopherol deficiency in the brain starting at an early age.


Free Radical Research | 2008

Severe Vitamin E deficiency modulates airway allergic inflammatory responses in the murine asthma model

Yunsook Lim; Vihas T. Vasu; Giuseppe Valacchi; Scott W. Leonard; Hnin Hnin Aung; Bettina C. Schock; Nicholas J. Kenyon; Chin-Shang Li; Maret G. Traber; Carroll E. Cross

Allergic asthma is a complex immunologically mediated disease associated with increased oxidative stress and altered antioxidant defenses. It was hypothesized that α-tocopherol (α-T) decreases oxidative stress and therefore its absence may influence allergic inflammatory process, a pathobiology known to be accompanied by oxidative stress. Therefore, selected parameters of allergic asthma sensitization and inflammation were evaluated following ovalbumin sensitization and re-challenge of α-T transfer protein (TTP) knock-out mice (TTP−/−) that have greatly reduced lung α-T levels (e.g.<5%) compared to their litter mate controls (TTP+/+). Results showed that severe α-T deficiency result in a blunted lung expression of IL-5 mRNA and IL-5 protein and plasma IgE levels compared with TTP+/+ mice following immune sensitization and rechallenge, although lung lavage eosinophil levels were comparable in both genomic strains. It is concluded that the initial stimulation of immune responses by the TTP−/− mice were generally blunted compared to the TTP+/+ mice, thus diminishing some aspects of subsequent allergic inflammatory processes.

Collaboration


Dive into the Hnin Hnin Aung's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Vihas T. Vasu

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kit Fai Ng

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge