Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ho-Jin Koh is active.

Publication


Featured researches published by Ho-Jin Koh.


Biochemical Journal | 2007

Adrenaline is a critical mediator of acute exercise-induced AMP-activated protein kinase activation in adipocytes

Ho-Jin Koh; Michael F. Hirshman; Huamei He; Yangfeng Li; Yasuko Manabe; James A. Balschi; Laurie J. Goodyear

Exercise increases AMPK (AMP-activated protein kinase) activity in human and rat adipocytes, but the underlying molecular mechanisms and functional consequences of this activation are not known. Since adrenaline (epinephrine) concentrations increase with exercise, in the present study we hypothesized that adrenaline activates AMPK in adipocytes. We show that a single bout of exercise increases AMPKalpha1 and alpha2 activities and ACC (acetyl-CoA carboxylase) Ser79 phosphorylation in rat adipocytes. Similarly to exercise, adrenaline treatment in vivo increased AMPK activities and ACC phosphorylation. Pre-treatment of rats with the beta-blocker propranolol fully blocked exercise-induced AMPK activation. Increased AMPK activity with exercise and adrenaline treatment in vivo was accompanied by an increased AMP/ATP ratio. Adrenaline incubation of isolated adipocytes also increased the AMP/ATP ratio and AMPK activities, an effect blocked by propranolol. Adrenaline incubation increased lipolysis in isolated adipocytes, and Compound C, an AMPK inhibitor, attenuated this effect. Finally, a potential role for AMPK in the decreased adiposity associated with chronic exercise was suggested by marked increases in AMPKalpha1 and alpha2 activities in adipocytes from rats trained for 6 weeks. In conclusion, both acute and chronic exercise are significant regulators of AMPK activity in rat adipocytes. Our findings suggest that adrenaline plays a critical role in exercise-stimulated AMPKalpha1 and alpha2 activities in adipocytes, and that AMPK can function in the regulation of lipolysis.


Proceedings of the National Academy of Sciences of the United States of America | 2010

Sucrose nonfermenting AMPK-related kinase (SNARK) mediates contraction-stimulated glucose transport in mouse skeletal muscle.

Ho-Jin Koh; Taro Toyoda; Nobuharu Fujii; Michelle M. Jung; Amee Rathod; R. Jan-Willem Middelbeek; Sarah J. Lessard; Jonas T. Treebak; Katsuya Tsuchihara; Hiroyasu Esumi; Erik A. Richter; Jørgen F. P. Wojtaszewski; Michael F. Hirshman; Laurie J. Goodyear

The signaling mechanisms that mediate the important effects of contraction to increase glucose transport in skeletal muscle are not well understood, but are known to occur through an insulin-independent mechanism. Muscle-specific knockout of LKB1, an upstream kinase for AMPK and AMPK-related protein kinases, significantly inhibited contraction-stimulated glucose transport. This finding, in conjunction with previous studies of ablated AMPKα2 activity showing no effect on contraction-stimulated glucose transport, suggests that one or more AMPK-related protein kinases are important for this process. Muscle contraction increased sucrose nonfermenting AMPK-related kinase (SNARK) activity, an effect blunted in the muscle-specific LKB1 knockout mice. Expression of a mutant SNARK in mouse tibialis anterior muscle impaired contraction-stimulated, but not insulin-stimulated, glucose transport. Whole-body SNARK heterozygotic knockout mice also had impaired contraction-stimulated glucose transport in skeletal muscle, and knockdown of SNARK in C2C12 muscle cells impaired sorbitol-stimulated glucose transport. SNARK is activated by muscle contraction and is a unique mediator of contraction-stimulated glucose transport in skeletal muscle.


Current Opinion in Clinical Nutrition and Metabolic Care | 2008

LKB1 and AMPK and the regulation of skeletal muscle metabolism

Ho-Jin Koh; Josef Brandauer; Laurie J. Goodyear

Purpose of reviewTo address the role of LKB1 and AMP-activated protein kinase (AMPK) in glucose transport, fatty acid oxidation, and metabolic adaptations in skeletal muscle. Recent findingsContraction-mediated skeletal muscle glucose transport is decreased in muscle-specific LKB1 knockout mice, but not in whole body AMPKα2 knockout mice or AMPKα2 inactive transgenic mice.Chronic activation of AMPK by 5-aminoimidazole-4-carboxamide-1-β-D-ribofuranoside (AICAR) and β-guanadinopropionic acid enhances mitochondrial function in skeletal muscle, but AICAR or exercise-induced increases in mitochondrial markers are preserved in skeletal muscles from whole body AMPKα2 or muscle-specific LKB1 knockout mice.Pharmacological activation of AMPK increases glucose transport and fatty acid oxidation in skeletal muscle. Therefore, chronic activation of AMPK may be beneficial in the treatment of obesity and type 2 diabetes. SummaryLKB1 and AMPK play important roles in regulating metabolism in resting and contracting skeletal muscle.


Journal of Biological Chemistry | 2011

Myo1c regulates glucose uptake in mouse skeletal muscle

Taro Toyoda; Ding Ding An; Carol A. Witczak; Ho-Jin Koh; Michael F. Hirshman; Nobuharu Fujii; Laurie J. Goodyear

Contraction and insulin promote glucose uptake in skeletal muscle through GLUT4 translocation to cell surface membranes. Although the signaling mechanisms leading to GLUT4 translocation have been extensively studied in muscle, the cellular transport machinery is poorly understood. Myo1c is an actin-based motor protein implicated in GLUT4 translocation in adipocytes; however, the expression profile and role of Myo1c in skeletal muscle have not been investigated. Myo1c protein abundance was higher in more oxidative skeletal muscles and heart. Voluntary wheel exercise (4 weeks, 8.2 ± 0.8 km/day), which increased the oxidative profile of the triceps muscle, significantly increased Myo1c protein levels by ∼2-fold versus sedentary controls. In contrast, high fat feeding (9 weeks, 60% fat) significantly reduced Myo1c by 17% in tibialis anterior muscle. To study Myo1c regulation of glucose uptake, we expressed wild-type Myo1c or Myo1c mutated at the ATPase catalytic site (K111A-Myo1c) in mouse tibialis anterior muscles in vivo and assessed glucose uptake in vivo in the basal state, in response to 15 min of in situ contraction, and 15 min following maximal insulin injection (16.6 units/kg of body weight). Expression of wild-type Myo1c or K111A-Myo1c had no effect on basal glucose uptake. However, expression of wild-type Myo1c significantly increased contraction- and insulin-stimulated glucose uptake, whereas expression of K111A-Myo1c decreased both contraction-stimulated and insulin-stimulated glucose uptake. Neither wild-type nor K111A-Myo1c expression altered GLUT4 expression, and neither affected contraction- or insulin-stimulated signaling proteins. Myo1c is a novel mediator of both insulin-stimulated and contraction-stimulated glucose uptake in skeletal muscle.


Biochimica et Biophysica Acta | 2010

Ablation of LKB1 in the heart leads to energy deprivation and impaired cardiac function

Niels Jessen; Ho-Jin Koh; Clifford D.L. Folmes; Cory S. Wagg; Nobuharu Fujii; Bo Løfgren; Cordula M. Wolf; Charles I. Berul; Michael F. Hirshman; Gary D. Lopaschuk; Laurie J. Goodyear

Energy deprivation in the myocardium is associated with impaired heart function and increased morbidity. LKB1 is a kinase that is required for activation of AMP-activated protein kinase (AMPK) as well as 13 AMPK-related protein kinases. AMPK stimulates ATP production during ischemia and prevents post-ischemic dysfunction. We used the Cre-Lox system to generate mice where LKB1 was selectively knocked out in cardiomyocytes and muscle cells (LKB1-KO) to assess the role of LKB1 on cardiac function in these mice. Heart rates of LKB1-KO mice were reduced and ventricle diameter was increased. Ex vivo, cardiac function was impaired during aerobic perfusion of isolated working hearts, and recovery of function after ischemia was reduced. Although oxidative metabolism and mitochondrial function were normal, the AMP/ATP ratio was increased in LKB1-KO hearts. This was associated with a complete ablation of AMPKalpha2 activity, and a stimulation of signaling through the mammalian target of rapamycin. Our results establish a critical role for LKB1 for normal cardiac function under both aerobic conditions and during recovery after ischemia. Ablation of LKB1 leads to a decreased cardiac efficiency despite normal mitochondrial oxidative metabolism.


Diabetes | 2013

Contraction and AICAR Stimulate IL-6 Vesicle Depletion From Skeletal Muscle Fibers In Vivo

Hans P.M.M. Lauritzen; Josef Brandauer; Peter Schjerling; Ho-Jin Koh; Jonas T. Treebak; Michael F. Hirshman; H. Galbo; Laurie J. Goodyear

Recent studies suggest that interleukin 6 (IL-6) is released from contracting skeletal muscles; however, the cellular origin, secretion kinetics, and signaling mechanisms regulating IL-6 secretion are unknown. To address these questions, we developed imaging methodology to study IL-6 in fixed mouse muscle fibers and in live animals in vivo. Using confocal imaging to visualize endogenous IL-6 protein in fixed muscle fibers, we found IL-6 in small vesicle structures distributed throughout the fibers under basal (resting) conditions. To determine the kinetics of IL-6 secretion, intact quadriceps muscles were transfected with enhanced green fluorescent protein (EGFP)-tagged IL-6 (IL-6-EGFP), and 5 days later anesthetized mice were imaged before and after muscle contractions in situ. Contractions decreased IL-6-EGFP–containing vesicles and protein by 62% (P < 0.05), occurring rapidly and progressively over 25 min of contraction. However, contraction-mediated IL-6-EGFP reduction was normal in muscle-specific AMP-activated protein kinase (AMPK) α2-inactive transgenic mice. In contrast, the AMPK activator AICAR decreased IL-6-EGFP vesicles, an effect that was inhibited in the transgenic mice. In conclusion, resting skeletal muscles contain IL-6–positive vesicles that are expressed throughout myofibers. Contractions stimulate the rapid reduction of IL-6 in myofibers, occurring through an AMPKα2-independent mechanism. This novel imaging methodology clearly establishes IL-6 as a contraction-stimulated myokine and can be used to characterize the secretion kinetics of other putative myokines.


Journal of Clinical Investigation | 2016

The AMPK-related kinase SNARK regulates muscle mass and myocyte survival

Sarah J. Lessard; Donato A. Rivas; Kawai So; Ho-Jin Koh; André Lima Queiroz; Michael F. Hirshman; Roger A. Fielding; Laurie J. Goodyear

The maintenance of skeletal muscle mass is critical for sustaining health; however, the mechanisms responsible for muscle loss with aging and chronic diseases, such as diabetes and obesity, are poorly understood. We found that expression of a member of the AMPK-related kinase family, the SNF1-AMPK-related kinase (SNARK, also known as NUAK2), increased with muscle cell differentiation. SNARK expression increased in skeletal muscles from young mice exposed to metabolic stress and in muscles from healthy older human subjects. The regulation of SNARK expression in muscle with differentiation and physiological stress suggests that SNARK may function in the maintenance of muscle mass. Consistent with this hypothesis, decreased endogenous SNARK expression (using siRNA) in cultured muscle cells resulted in increased apoptosis and decreased cell survival under conditions of metabolic stress. Likewise, muscle-specific transgenic animals expressing a SNARK dominant-negative inactive mutant (SDN) had increased myonuclear apoptosis and activation of apoptotic mediators in muscle. Moreover, animals expressing SDN had severe, age-accelerated muscle atrophy and increased adiposity, consistent with sarcopenic obesity. Reduced SNARK activity, in vivo and in vitro, caused downregulation of the Rho kinase signaling pathway, a key mediator of cell survival. These findings reveal a critical role for SNARK in myocyte survival and the maintenance of muscle mass with age.


American Journal of Physiology-cell Physiology | 2017

Acute myotube protein synthesis regulation by IL-6-related cytokines

Song Gao; J. Larry Durstine; Ho-Jin Koh; Wayne Carver; Norma Frizzell; James A. Carson

IL-6 and leukemia inhibitory factor (LIF), members of the IL-6 family of cytokines, play recognized paradoxical roles in skeletal muscle mass regulation, being associated with both growth and atrophy. Overload or muscle contractions can induce a transient increase in muscle IL-6 and LIF expression, which has a regulatory role in muscle hypertrophy. However, the cellular mechanisms involved in this regulation have not been completely identified. The induction of mammalian target of rapamycin complex 1 (mTORC1)-dependent myofiber protein synthesis is an established regulator of muscle hypertrophy, but the involvement of the IL-6 family of cytokines in this process is poorly understood. Therefore, we investigated the acute effects of IL-6 and LIF administration on mTORC1 signaling and protein synthesis in C2C12 myotubes. The role of glycoprotein 130 (gp130) receptor and downstream signaling pathways, including phosphoinositide 3-kinase (PI3K)-Akt-mTORC1 and signal transducer and activator of transcription 3 (STAT3)-suppressor of cytokine signaling 3 (SOCS3), was investigated by administration of specific siRNA or pharmaceutical inhibitors. Acute administration of IL-6 and LIF induced protein synthesis, which was accompanied by STAT3 activation, Akt-mTORC1 activation, and increased SOCS3 expression. This induction of protein synthesis was blocked by both gp130 siRNA knockdown and Akt inhibition. Interestingly, STAT3 inhibition or Akt downstream mTORC1 signaling inhibition did not fully block the IL-6 or LIF induction of protein synthesis. SOCS3 siRNA knockdown increased basal protein synthesis and extended the duration of the protein synthesis induction by IL-6 and LIF. These results demonstrate that either IL-6 or LIF can activate gp130-Akt signaling axis, which induces protein synthesis via mTORC1-independent mechanisms in cultured myotubes. However, IL-6- or LIF-induced SOCS3 negatively regulates the activation of myotube protein synthesis.


Journal of Cachexia, Sarcopenia and Muscle | 2018

Inflammatory signalling regulates eccentric contraction-induced protein synthesis in cachectic skeletal muscle: Cachectic muscle mTORC1 regulation by ECC

Justin P. Hardee; Brittany R. Counts; Song Gao; Brandon N. VanderVeen; Dennis K. Fix; Ho-Jin Koh; James A. Carson

Skeletal muscle responds to eccentric contractions (ECC) with an anabolic response that involves the induction of protein synthesis through the mechanistic target of rapamycin complex 1. While we have reported that repeated ECC bouts after cachexia initiation attenuated muscle mass loss and inflammatory signalling, cachectic muscles capacity to induce protein synthesis in response to ECC has not been determined. Therefore, we examined cachectic muscles ability to induce mechano‐sensitive pathways and protein synthesis in response to an anabolic stimulus involving ECC and determined the role of muscle signal transducer and activator of transcription 3 (STAT3)/nuclear factor kappa‐light‐chain‐enhancer of activated B cells (NFκB) signalling on ECC‐induced anabolic signalling.


Biochemical and Biophysical Research Communications | 2016

Tribbles 3 inhibits brown adipocyte differentiation and function by suppressing insulin signaling.

Ha-Won Jeong; Ran Hee Choi; Jamie L. McClellan; Gerardo G. Piroli; Norma Frizzell; Yu-Hua Tseng; Laurie J. Goodyear; Ho-Jin Koh

Recent studies have demonstrated that adult humans have substantial amounts of functioning brown adipose tissue (BAT). Since BAT has been implicated as an anti-obese and anti-diabetic tissue, it is important to understand the signaling molecules that regulate BAT function. There has been a link between insulin signaling and BAT metabolism as deletion or pharmaceutical inhibition of insulin signaling impairs BAT differentiation and function. Tribbles 3 (TRB3) is a pseudo kinase that has been shown to regulate metabolism and insulin signaling in multiple tissues but the role of TRB3 in BAT has not been studied. In this study, we found that TRB3 expression was present in BAT and overexpression of TRB3 in brown preadipocytes impaired differentiation and decreased expression of BAT markers. Furthermore, TRB3 overexpression resulted in significantly lower oxygen consumption rates for basal and proton leakage, indicating decreased BAT activity. Based on previous studies showing that deletion or pharmaceutical inhibition of insulin signaling impairs BAT differentiation and function, we assessed insulin signaling in brown preadipocytes and BAT in vivo. Overexpression of TRB3 in cells impaired insulin-stimulated IRS1 and Akt phosphorylation, whereas TRB3KO mice displayed improved IRS1 and Akt phosphorylation. Finally, deletion of IRS1 abolished the function of TRB3 to regulate BAT differentiation and metabolism. These data demonstrate that TRB3 inhibits insulin signaling in BAT, resulting in impaired differentiation and function.

Collaboration


Dive into the Ho-Jin Koh's collaboration.

Top Co-Authors

Avatar

Laurie J. Goodyear

Brigham and Women's Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Nobuharu Fujii

Tokyo Metropolitan University

View shared research outputs
Top Co-Authors

Avatar

James A. Carson

University of South Carolina

View shared research outputs
Top Co-Authors

Avatar

Ran Hee Choi

University of South Carolina

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ha-Won Jeong

University of South Carolina

View shared research outputs
Top Co-Authors

Avatar

Jamie L. McClellan

University of South Carolina

View shared research outputs
Researchain Logo
Decentralizing Knowledge