Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ho-Phuong-Thuy Ngo is active.

Publication


Featured researches published by Ho-Phuong-Thuy Ngo.


Molecules and Cells | 2012

Crystal Structure of Malonyl CoA-Acyl Carrier Protein Transacylase from Xanthomanous oryzae pv. oryzae and Its Proposed Binding with ACP

Sampath Natarajan; Jin-Kwang Kim; Tae-Kyun Jung; Thanh Thi Ngoc Doan; Ho-Phuong-Thuy Ngo; Myoung-Ki Hong; Seunghwan Kim; Viet Pham Tan; Seok Joon Ahn; Sang Hee Lee; Yesun Han; Yeh-Jin Ahn; Lin-Woo Kang

Xanthomonas oryzae pv. oryzae (Xoo) is a plant bacterial pathogen that causes bacterial blight (BB) disease, resulting in serious production losses of rice. The crystal structure of malonyl CoA-acyl carrier protein transacylase (XoMCAT), encoded by the gene fabD (Xoo0880) from Xoo, was determined at 2.3 Å resolution in complex with N-cyclohexyl-2-aminoethansulfonic acid. Malonyl CoA-acyl carrier protein transacylase transfers malonyl group from malonyl CoA to acyl carrier protein (ACP). The transacylation step is essential in fatty acid synthesis. Based on the rationale, XoMCAT has been considered as a target for antibacterial agents against BB. Protein-protein interaction between XoMCAT and ACP was also extensively investigated using computational docking, and the proposed model revealed that ACP bound to the cleft between two XoMCAT subdomains.


Archives of Biochemistry and Biophysics | 2014

Crystal structures of d-alanine-d-alanine ligase from Xanthomonas oryzae pv. oryzae alone and in complex with nucleotides

Thanh Thi Ngoc Doan; Jin-Kwang Kim; Ho-Phuong-Thuy Ngo; Huyen-Thi Tran; Sun-Shin Cha; Kyung Min Chung; Kim-Hung Huynh; Yeh-Jin Ahn; Lin-Woo Kang

D-Alanine-D-alanine ligase (DDL) catalyzes the biosynthesis of d-alanyl-d-alanine, an essential bacterial peptidoglycan precursor, and is an important drug target for the development of antibacterials. We determined four different crystal structures of DDL from Xanthomonas oryzae pv. oryzae (Xoo) causing Bacteria Blight (BB), which include apo, ADP-bound, ATP-bound, and AMPPNP-bound structures at the resolution between 2.3 and 2.0 Å. Similarly with other DDLs, the active site of XoDDL is formed by three loops from three domains at the center of enzyme. Compared with d-alanyl-d-alanine and ATP-bound TtDDL structure, the γ-phosphate of ATP in XoDDL structure was shifted outside toward solution. We swapped the ω-loop (loop3) of XoDDL with those of Escherichia coli and Helicobacter pylori DDLs, and measured the enzymatic kinetics of wild-type XoDDL and two mutant XoDDLs with the swapped ω-loops. Results showed that the direct interactions between ω-loop and other two loops are essential for the active ATP conformation for D-ala-phosphate formation.


Applied and Environmental Microbiology | 2016

Alternative Biotransformation of Retinal to Retinoic Acid or Retinol by an Aldehyde Dehydrogenase from Bacillus cereus

Seung-Hye Hong; Ho-Phuong-Thuy Ngo; Hyun-Koo Nam; Kyoung-Rok Kim; Lin-Woo Kang; Deok-Kun Oh

ABSTRACT A novel bacterial aldehyde dehydrogenase (ALDH) that converts retinal to retinoic acid was first identified in Bacillus cereus. The amino acid sequence of ALDH from B. cereus (BcALDH) was more closely related to mammalian ALDHs than to bacterial ALDHs. This enzyme converted not only small aldehydes to carboxylic acids but also the large aldehyde all-trans-retinal to all-trans-retinoic acid with NAD(P)+. We newly found that BcALDH and human ALDH (ALDH1A1) could reduce all-trans-retinal to all-trans-retinol with NADPH. The catalytic residues in BcALDH were Glu266 and Cys300, and the cofactor-binding residues were Glu194 and Glu457. The E266A and C300A variants showed no oxidation activity. The E194S and E457V variants showed 15- and 7.5-fold higher catalytic efficiency (k cat/Km ) for the reduction of all-trans-retinal than the wild-type enzyme, respectively. The wild-type, E194S variant, and E457V variant enzymes with NAD+ converted 400 μM all-trans-retinal to 210 μM all-trans-retinoic acid at the same amount for 240 min, while with NADPH, they converted 400 μM all-trans-retinal to 20, 90, and 40 μM all-trans-retinol, respectively. These results indicate that BcALDH and its variants are efficient biocatalysts not only in the conversion of retinal to retinoic acid but also in its conversion to retinol with a cofactor switch and that retinol production can be increased by the variant enzymes. Therefore, BcALDH is a novel bacterial enzyme for the alternative production of retinoic acid and retinol. IMPORTANCE Although mammalian ALDHs have catalyzed the conversion of retinal to retinoic acid with NAD(P)+ as a cofactor, a bacterial ALDH involved in the conversion is first characterized. The biotransformation of all-trans-retinal to all-trans-retinoic acid by BcALDH and human ALDH was altered to the biotransformation to all-trans-retinol by a cofactor switch using NADPH. Moreover, the production of all-trans-retinal to all-trans-retinol was changed by mutations at positions 194 and 457 in BcALDH. The alternative biotransformation of retinoids was first performed in the present study. These results will contribute to the biotechnological production of retinoids, including retinoic acid and retinol.


Acta Crystallographica Section D-biological Crystallography | 2014

Divalent metal ion-based catalytic mechanism of the Nudix hydrolase Orf153 (YmfB) from Escherichia coli

Myoung-Ki Hong; António J. M. Ribeiro; Jin-Kwang Kim; Ho-Phuong-Thuy Ngo; Jiyoung Kim; Choong Hwan Lee; Yeh-Jin Ahn; Pedro A. Fernandes; Qing Li; Maria J. Ramos; Lin-Woo Kang

YmfB from Escherichia coli is the Nudix hydrolase involved in the metabolism of thiamine pyrophosphate, an important compound in primary metabolism and a cofactor of many enzymes. In addition, it hydrolyzes (d)NTPs to (d)NMPs and inorganic orthophosphates in a stepwise manner. The structures of YmfB alone and in complex with three sulfates and two manganese ions determined by X-ray crystallography, when compared with the structures of other Nudix hydrolases such as MutT, Ap4Aase and DR1025, provide insight into the unique hydrolysis mechanism of YmfB. Mass-spectrometric analysis confirmed that water attacks the terminal phosphates of GTP and GDP sequentially. Kinetic analysis of binding-site mutants showed that no individual residue is absolutely required for catalytic activity, suggesting that protein residues do not participate in the deprotonation of the attacking water. Thermodynamic integration calculations show that a hydroxyl ion bound to two divalent metal ions attacks the phosphate directly without the help of a nearby catalytic base.


Acta Crystallographica Section F-structural Biology and Crystallization Communications | 2013

Expression, crystallization and preliminary X-ray crystallographic analysis of aldehyde dehydrogenase (ALDH) from Bacillus cereus.

Ho-Phuong-Thuy Ngo; Seung-Hye Hong; Deok-Kun Oh; Lin-Woo Kang

Aldehyde dehydrogenase (ALDH) catalyses the oxidation of aldehydes using NAD(P)(+) as a cofactor. Most aldehydes are toxic at low levels. ALDHs are used to regulate metabolic intermediate aldehydes. The aldh gene from Bacillus cereus was cloned and the ALDH protein was expressed, purified and crystallized. A crystal of the ALDH protein diffracted to 2.6 Å resolution and belonged to the monoclinic space group P21, with unit-cell parameters a = 83.5, b = 93.3, c = 145.5 Å, β = 98.05°. Four protomers were present in the asymmetric unit, with a corresponding VM of 2.55 Å(3) Da(-1) and a solvent content of 51.8%.


Acta Crystallographica Section F-structural Biology and Crystallization Communications | 2014

Expression, crystallization and preliminary X-ray crystallographic analysis of D-alanine-D-alanine ligase from OXA-23-producing Acinetobacter baumannii K0420859

Kim-Hung Huynh; Huyen-Thi Tran; Tan-Viet Pham; Ho-Phuong-Thuy Ngo; Sun-Shin Cha; Kyung Min Chung; Sang Hee Lee; Lin-Woo Kang

Acinetobacter baumannii causes bacteraemia, pneumonia, other respiratory-tract and urinary-tract infections in humans. OXA-23 carbapenemase-producing A. baumannii K0420859 (A. baumannii OXA-23) is resistant to carbapenem, a common antibacterial drug. To develop an efficient and novel antibacterial drug against A. baumannii OXA-23, D-alanine-D-alanine ligase, which is essential in bacterial cell-wall synthesis, is of interest. Here, the D-alanine-D-alanine ligase (AbDdl) gene from A. baumannii OXA-23 was cloned and expressed, and the AbDdl protein was purified and crystallized; this enzyme can be used as a novel target for an antibacterial drug against A. baumannii OXA-23. The AbDdl crystal diffracted to a resolution of 2.8 Å and belonged to the orthorhombic space group P212121, with unit-cell parameters a = 113.4, b = 116.7, c = 176.5 Å, a corresponding VM of 2.8 Å(3) Da(-1) and a solvent content of 56.3%, and six protomers in the asymmetric unit.


Acta Crystallographica Section F-structural Biology and Crystallization Communications | 2013

Expression, crystallization and preliminary X-ray crystallographic analysis of cellobiose 2-epimerase from Dictyoglomus turgidum DSM 6724

Tan-Viet Pham; Seung-Hye Hong; Myoung-Ki Hong; Ho-Phuong-Thuy Ngo; Deok-Kun Oh; Lin-Woo Kang

Cellobiose 2-epimerase epimerizes and isomerizes β-1,4- and α-1,4-gluco-oligosaccharides. N-Acyl-D-glucosamine 2-epimerase (DT_epimerase) from Dictyoglomus turgidum has an unusually high catalytic activity towards its substrate cellobiose. DT_epimerase was expressed, purified and crystallized. Crystals were obtained of both His-tagged DT_epimerase and untagged DT_epimerase. The crystals of His-tagged DT_epimerase diffracted to 2.6 Å resolution and belonged to the monoclinic space group P2₁, with unit-cell parameters a=63.9, b=85.1, c=79.8 Å, β=110.8°. With a Matthews coefficient VM of 2.18 Å3 Da(-1), two protomers were expected to be present in the asymmetric unit with a solvent content of 43.74%. The crystals of untagged DT_epimerase diffracted to 1.85 Å resolution and belonged to the orthorhombic space group P2₁2₁2₁, with unit-cell parameters a=55.9, b=80.0, c=93.7 Å. One protomer in the asymmetric unit was expected, with a corresponding VM of 2.26 Å3 Da(-1) and a solvent content of 45.6%.


Acta Crystallographica Section F-structural Biology and Crystallization Communications | 2013

Expression, crystallization and preliminary X-ray crystallographic analysis of alcohol dehydrogenase (ADH) from Kangiella koreensis

Ho-Phuong-Thuy Ngo; Seung-Hye Hong; Myoung-Ki Hong; Tan-Viet Pham; Deok-Kun Oh; Lin-Woo Kang

Alcohol dehydrogenases (ADHs) are a group of dehydrogenase enzymes that facilitate the interconversion between alcohols and aldehydes or ketones with the reduction of NAD(+) to NADH. In bacteria, some alcohol dehydrogenases catalyze the opposite reaction as part of fermentation to ensure a constant supply of NAD(+). The adh gene from Kangiella koreensis was cloned and the protein (KkADH) was expressed, purified and crystallized. A KkADH crystal diffracted to 2.5 Å resolution and belonged to the monoclinic space group P2(1), with unit-cell parameters a = 94.1, b = 80.9, c = 115.6 Å, β = 111.9°. Four monomers were present in the asymmetric unit, with a corresponding VM of 2.55 Å(3) Da(-1) and a solvent content of 51.8%.


Acta Crystallographica Section F-structural Biology and Crystallization Communications | 2014

Expression, crystallization and preliminary X-ray crystallographic analysis of DNA-directed RNA polymerase subunit L from Thermococcus onnurineus NA1.

Thien-Hoang Ho; Myoung-Ki Hong; Ho-Phuong-Thuy Ngo; Lin-Woo Kang

RNA polymerase (RNAP) plays a crucial role in gene expression in all organisms. It is a multiprotein complex that produces primary transcript RNA. Generally, the basal transcription apparatus in archaea is simpler than the eukaryotic RNA polymerase II counterpart. To understand the structure and function of archaeal RNAP, the TON-0309 gene encoding DNA-directed RNA polymerase subunit L (ToRNAP_L) from Thermococcus onnurineus NA1 was cloned and the protein was overexpressed in Escherichia coli, purified and crystallized. The purified protein was crystallized using the hanging-drop vapour-diffusion method and the crystal diffracted to 2.10 Å resolution. The crystal belonged to the hexagonal space group P6122, with unit-cell parameters a = b = 42.3, c = 211.2 Å. One molecule was present in the asymmetric unit, with a corresponding VM of 2.5 Å(3) Da(-1) and a solvent content of 50.0%.


Acta Crystallographica Section F-structural Biology and Crystallization Communications | 2014

Crystallization and preliminary X-ray crystallographic analysis of the XoGroEL chaperonin from Xanthomonas oryzae pv. oryzae.

Huyen-Thi Tran; Tan-Viet Pham; Ho-Phuong-Thuy Ngo; Myoung-Ki Hong; Jeong-Gu Kim; Sang Hee Lee; Yeh-Jin Ahn; Lin-Woo Kang

Along with the co-chaperonin GroES, the chaperonin GroEL plays an essential role in enhancing protein folding or refolding and in protecting proteins against misfolding and aggregation in the cellular environment. The XoGroEL gene (XOO_4288) from Xanthomonas oryzae pv. oryzae was cloned and the protein was expressed, purified and crystallized. The purified XoGroEL protein was crystallized using the hanging-drop vapour-diffusion method and a crystal diffracted to a resolution of 3.4 Å. The crystal belonged to the orthorhombic space group P212121 with 14 monomers in the asymmetric unit, with a corresponding VM of 2.7 Å(3) Da(-1) and a solvent content of 54.5%.

Collaboration


Dive into the Ho-Phuong-Thuy Ngo's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Seunghwan Kim

Rural Development Administration

View shared research outputs
Researchain Logo
Decentralizing Knowledge