Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ho Young Jo is active.

Publication


Featured researches published by Ho Young Jo.


Journal of Hazardous Materials | 2010

Removal of divalent heavy metals (Cd, Cu, Pb, and Zn) and arsenic(III) from aqueous solutions using scoria: Kinetics and equilibria of sorption

Jang Soon Kwon; Seong Taek Yun; Jong Hwa Lee; Soon Oh Kim; Ho Young Jo

Kinetic and equilibrium sorption experiments were conducted on removal of divalent heavy metals (Pb(II), Cu(II), Zn(II), Cd(II)) and trivalent arsenic (As(III)) from aqueous solutions by scoria (a vesicular pyroclastic rock with basaltic composition) from Jeju Island, Korea, in order to examine its potential use as an efficient sorbent. The removal efficiencies of Pb, Cu, Zn, Cd, and As by the scoria (size=0.1-0.2mm, dose=60gL(-1)) were 94, 70, 63, 59, and 14%, respectively, after a reaction time of 24h under a sorbate concentration of 1mM and the solution pH of 5.0. A careful examination on ionic concentrations in sorption batches suggested that sorption behaviors of heavy metals onto scoria are mainly controlled by cation exchange. On the other hand, arsenic appeared to be sensitive to specific sorption onto hematite (a minor constituent of scoria). Equilibrium sorption tests indicated that the removal efficiency for heavy metals increases with increasing pH of aqueous solutions, which is resulted from precipitation as hydroxides. Similarly, multi-component systems containing heavy metals and arsenic showed that the arsenic removal increases with increasing pH of aqueous solutions, which can be attributed to coprecipitation with metal hydroxides. The empirically determined sorption kinetics were well fitted to a pseudo-second order model, while equilibrium sorption data for heavy metals and arsenic onto scoria were consistent with the Langmuir and Freundlich isotherms, respectively. Natural scoria studied in this work is an efficient sorbent for concurrent removal of divalent heavy metals and arsenic.


Clays and Clay Minerals | 2004

Hydraulic conductivity and cation exchange in non-prehydrated and prehydrated bentonite permeated with weak inorganic salt solutions

Ho Young Jo; Craig H. Benson; Tuncer B. Edil

Sets of replicate hydraulic conductivity tests were conducted using 100 mM KCl and 20 and 40 mM CaCl2 solutions to evaluate how changes in hydraulic conductivity are related to changes in the exchange complex and physical properties (water content and free swell) of prehydrated and non-prehydrated bentonite used for geosynthetic clay liners (GCLs). Essentially no change in hydraulic conductivity and water content (or void ratio) occurred during tests with the 100 mM KCl solution even though K+ was replacing Na+ on the exchange complex. In contrast, for the CaCl2 solutions (20 mM and 40 mM), the hydraulic conductivity increased and the free swell and water content decreased as exchange of Ca2+ for Na+ occurred. Faster changes in hydraulic conductivity and the exchange complex occurred in the tests with the 40 mM CaCl2 solution and the non-prehydrated bentonite (i.e. the hydraulic conductivity changed more rapidly when exchange occurred more rapidly). Even though exchange of Ca2+ for Na+ was essentially complete at the end of testing, the hydraulic conductivity obtained with the 20 mM CaCl2 solution was less and the water content greater than obtained with the 40 mM CaCl2 solution (2.6 × 10−8 cm/s vs. 6.7 × 10−8 cm/s, 122% vs. 111%, and 3.2 vs. 2.9). Similarly, the prehydrated bentonite had lower hydraulic conductivity (1.9 × 10−8 cm/s vs. 6.7 × 10−8 cm/s) and greater water content (167% vs. 111%) than the non-prehydrated bentonite at the end of testing, even though Ca-for-Na exchange was essentially complete.


Chemosphere | 2013

Heavy metal concentrations and contamination levels from Asian dust and identification of sources: a case-study.

Pyeong Koo Lee; Seung Jun Youm; Ho Young Jo

The aims of this study were to determine concentrations of selected metals (As, Cd, Cr, Co, Cu, Ni, Sb, Pb and Zn) in Asian and non-Asian dust collected in Daejeon, Korea between February 2007 and December 2007 and to estimate the pollution sources. The geoaccumulation index (Igeo) and the enrichment factor (EF) show that the pollution levels of Cd, Pb, Zn, Sb, Cu, and As are much higher than those of Cr, Co and Ni. As, Cd, Cu, Sb, Pb, and Zn are the ones most strongly affected by anthropogenic inputs such as airborne pollutants. The (206)Pb/(207)Pb ratios of Asian and non-Asian dust are similar to those of the airborne particles in some heavily industrialized Chinese cities and the soils of the Alashan desert. To address the highly elevated levels of heavy metals found in Asian and non-Asian dust, studies should be performed to assess the potential impacts of settled particles on surface ecosystems, water resources, and human health in Korea.


Journal of Contaminant Hydrology | 2008

Hydrochemistry of urban groundwater, Seoul, Korea: The impact of subway tunnels on groundwater quality

Gi Tak Chae; Seong Taek Yun; Byoung-Young Choi; Soon Young Yu; Ho Young Jo; Bernhard Mayer; Yun Jong Kim; Jin-Yong Lee

Hydrogeologic and hydrochemical data for subway tunnel seepage waters in Seoul (Republic of Korea) were examined to understand the effect of underground tunnels on the degradation of urban groundwater. A very large quantity of groundwater (up to 63 million m3 year(-1)) is discharged into subway tunnels with a total length of 287 km, resulting in a significant drop of the local groundwater table and the abandonment of groundwater wells. For the tunnel seepage water samples (n = 72) collected from 43 subway stations, at least one parameter among pathogenic microbes (total coliform, heterotrophic bacteria), dissolved Mn and Fe, NH4+, NO3(-), turbidity, and color exceeded the Korean Drinking Water Standards. Locally, tunnel seepage water was enriched in dissolved Mn (avg. 0.70 mg L(-1), max. 5.58 mg L(-1)), in addition to dissolved Fe, NH4+, and pathogenic microbes, likely due to significant inflow of sewage water from broken or leaking sewer pipes. Geochemical modeling of redox reactions was conducted to simulate the characteristic hydrochemistry of subway tunnel seepage. The results show that variations in the reducing conditions occur in urban groundwater, dependent upon the amount of organic matter-rich municipal sewage contaminating the aquifer. The organic matter facilitates the reduction and dissolution of Mn- and Fe-bearing solids in aquifers and/or tunnel construction materials, resulting in the successive increase of dissolved Mn and Fe. The present study clearly demonstrates that locally significant deterioration of urban groundwater is caused by a series of interlinked hydrogeologic and hydrochemical changes induced by underground tunnels.


Journal of Hazardous Materials | 2009

Coal fly ash and synthetic coal fly ash aggregates as reactive media to remove zinc from aqueous solutions.

Jung Ki Hong; Ho Young Jo; Seong Taek Yun

Coal fly ash (CF) and synthetic coal fly ash aggregates (SCFAs) were evaluated as low-cost reactive media for the remediation of groundwater contaminated with Zn. The SCFAs were prepared by mixing CF, sodium silicate, and deionized (DI) water. Serial batch kinetic and static tests were conducted on both CF and SCFAs, under various conditions (i.e., pH, initial Zn concentration, reaction time, and solid dosage), using Zn(NO(3))(2).6H(2)O solutions. Serial column tests were also conducted on both CF and SCFAs. The final rather than the initial pH of the solution had a greater effect on the removal of Zn. At pH>7.0, the removal of Zn was due to precipitation, whereas at <7.0, the removal of Zn was due to adsorption onto the reactive media. The removal of Zn increased with increasing dosage of the reactive medium and decreasing initial Zn concentration. The results of the column and batch tests were comparable. Preferential flow paths were observed with CF, but not SCFA. The hydraulic conductivity of CF was more significantly decreased than that of SCFA with increasing dry density of the specimen.


Journal of Hazardous Materials | 2010

Evaluation of factors affecting performance of a zeolitic rock barrier to remove zinc from water.

Se Hoon Lee; Ho Young Jo; Seong Taek Yun; Young Jae Lee

This study examined the factors affecting the performance of zeolitic rocks as reactive media in a permeable reactive barrier (PRB) used to remediate groundwater contaminated with Zn. Serial batch kinetic and sorption tests were conducted on zeolitic rock samples under a variety of conditions (i.e., reaction time, pH, initial Zn concentration, and particle size) using Zn(NO(3))(2).6H(2)O solutions. Serial column tests were also conducted on zeolitic rock samples at various flow rates. The removal of Zn increased approximately from 20-60 to 70-100% with increasing pH from 2 to 4 and decreasing initial Zn concentration from 434 to 5mg/L. Zn removal was not affected by the particle size, regardless of the zeolitic rock samples used in this study. The Zn removal increased approximately from 20-70 to 60-100% with increasing the cation exchange capacity (CEC) from 124.9 to 178.5meq/100g and increasing zeolite (i.e., clinoptilonite and mordenite) and montmorillonite contents from 53.7 to 73.2%. The results from the column and batch tests were comparable. Increasing the flow rate caused the earlier breakthrough of Zn (sorbing cation) and a rapid decrease in the concentration of Na, Ca, and Mg (desorbing cations). The hydraulic conductivities of the samples were unaffected by the particle size and mineral components.


Journal of Hazardous Materials | 2012

Evaluation of the CO2 sequestration capacity for coal fly ash using a flow-through column reactor under ambient conditions

Ho Young Jo; Joon Hoon Ahn; Hwanju Jo

An in-situ CO(2) sequestration method using coal ash ponds located in coastal regions is proposed. The CO(2) sequestration capacity of coal fly ash (CFA) by mineral carbonation was evaluated in a flow-through column reactor under various conditions (solid dosage: 100-330 g/L, CO(2) flow rate: 20-80 mL/min, solvent type: deionized (DI) water, 1 M NH(4)Cl solution, and seawater). The CO(2) sequestration tests were conducted on CFA slurries using flow-through column reactors to simulate more realistic flow-through conditions. The CO(2) sequestration capacity increased when the solid dosage was increased, whereas it was affected insignificantly by the CO(2) flow rate. A 1 M NH(4)Cl solution was the most effective solvent, but it was not significantly different from DI water or seawater. The CO(2) sequestration capacity of CFA under the flow-through conditions was approximately 0.019 g CO(2)/g CFA under the test conditions (solid dosage: 333 g/L, CO(2) flow rate: 40 mL/min, and solvent: seawater).


Journal of Geotechnical and Geoenvironmental Engineering | 2015

Hydraulic Conductivity of Organoclay and Organoclay-Sand Mixtures to Fuels and Organic Liquids

Craig H. Benson; Ho Young Jo; Telma Musso

Abstract Hydraulic conductivity, swelling, and liquid sorption capacity (i.e., maximum organic liquid mass bound per mass organoclay solid) were measured for an organoclay with dimethylammonium bound to the surface. Five fuels (No. 1 fuel oil, No. 2 fuel oil, diesel, jet fuel, and gasoline), four pure organic liquids (methanol, phenol, ethylbenzene, and dioctyl phthalate), ranging from hydrophilic to hydrophobic, and Type II deionized (DI) water were used as liquids for solvation and permeation. The more hydrophilic liquids (methanol and phenol) and DI water resulted in low swelling ( ≤ 6 mL / 2 g ) or liquid sorption capacity ( ≤ 202 % ) and high hydraulic conductivity ( > 10 − 6 m / s ). The term hydraulic herein refers to liquid and applies to all permeant liquids used. The less-refined fuels composed of heavier distillates (fuel oil and diesel) and the phthalate resulted in low swelling ( 10 – 12 mL / 2 g ) and liquid sorption capacity ( < 235 % ) and intermediate to low hydraulic conductivi...


Japanese Journal of Applied Physics | 2011

Sonochemical Oxidation of Arsenite in Aqueous Phase

Mingcan Cui; Seban Lee; Min Jang; Boyoun Kweon; Ho Young Jo; Jeehyeong Khim

The objective of this research is to assess critically the experimental rate data for sonochemical oxidation of arsenite [As(III)] at different frequencies and powers in the aqueous phase. The oxidative conversion of As(III) into arsenate [As(V)] was >90% in the range of 283 to 450 kHz. With a power density of 69 W L-1, the oxidation of As(III) for 40 min at 283 kHz showed a second-order rate constant of 7.1×102 M-1 s-1, whereas it was 3.8×103 M-1 s-1 at 450 kHz. As calculated by the calorimetric method, the power transferred into samples was in the range of 7–34.5 W with the two frequencies of 283 or 450 kHz. Approximately 100% oxidation efficiency was obtained with a frequency of 450 kHz and 34.5 W. As the pretreatment process, oxidation by sonication has potential applications to groundwater contaminated with both As(III) and As(V).


Environmental Technology | 2012

Effect of extraction solutions on carbonation of cementitious materials in aqueous solutions

Hwanju Jo; Ho Young Jo; Young Nam Jang

Carbonation efficiency was evaluated for three cementitious materials having different CaO-bearing minerals (lime, Portland cement and waste concrete) using various extraction reagents (HCl, CH3COOH, NH4Cl and deionized water). The cementitious materials were subjected to Ca extraction and carbonation tests under ambient pressure and temperature conditions. The Ca extraction efficiency generally decreased in the order lime, Portland cement and waste concrete, regardless of the extraction solution. Among the extraction solutions, NH4Cl was the most effective for Ca extraction and carbonation. The results of this study suggest that the types of extraction solution and CaO-bearing mineral of the materials are primary factors affecting carbonation efficiency.

Collaboration


Dive into the Ho Young Jo's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Craig H. Benson

Applied Science Private University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Tuncer B. Edil

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge