Hoan Nguyen
French Institute of Health and Medical Research
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Hoan Nguyen.
American Journal of Human Genetics | 2012
Isabelle Audo; Kinga Bujakowska; Elise Orhan; Charlotte M. Poloschek; Sabine Defoort-Dhellemmes; Isabelle Drumare; Susanne Kohl; Tien D. Luu; Odile Lecompte; Eberhart Zrenner; Marie-Elise Lancelot; Aline Antonio; Aurore Germain; Christelle Michiels; Claire Audier; Mélanie Letexier; Jean-Paul Saraiva; Bart P. Leroy; Francis L. Munier; Saddek Mohand-Said; Birgit Lorenz; Christoph Friedburg; Markus N. Preising; Ulrich Kellner; Agnes B. Renner; Veselina Moskova-Doumanova; Wolfgang Berger; Bernd Wissinger; Christian P. Hamel; Daniel F. Schorderet
Congenital stationary night blindness (CSNB) is a heterogeneous retinal disorder characterized by visual impairment under low light conditions. This disorder is due to a signal transmission defect from rod photoreceptors to adjacent bipolar cells in the retina. Two forms can be distinguished clinically, complete CSNB (cCSNB) or incomplete CSNB; the two forms are distinguished on the basis of the affected signaling pathway. Mutations in NYX, GRM6, and TRPM1, expressed in the outer plexiform layer (OPL) lead to disruption of the ON-bipolar cell response and have been seen in patients with cCSNB. Whole-exome sequencing in cCSNB patients lacking mutations in the known genes led to the identification of a homozygous missense mutation (c.1807C>T [p.His603Tyr]) in one consanguineous autosomal-recessive cCSNB family and a homozygous frameshift mutation in GPR179 (c.278delC [p.Pro93Glnfs(∗)57]) in a simplex male cCSNB patient. Additional screening with Sanger sequencing of 40 patients identified three other cCSNB patients harboring additional allelic mutations in GPR179. Although, immunhistological studies revealed Gpr179 in the OPL in wild-type mouse retina, Gpr179 did not colocalize with specific ON-bipolar markers. Interestingly, Gpr179 was highly concentrated in horizontal cells and Müller cell endfeet. The involvement of these cells in cCSNB and the specific function of GPR179 remain to be elucidated.
American Journal of Human Genetics | 2013
Christina Zeitz; Samuel G. Jacobson; Christian P. Hamel; Kinga Bujakowska; Marion Neuillé; Elise Orhan; Xavier Zanlonghi; Marie-Elise Lancelot; Christelle Michiels; Sharon B. Schwartz; Béatrice Bocquet; Aline Antonio; Claire Audier; Mélanie Letexier; Jean-Paul Saraiva; Tien D. Luu; Florian Sennlaub; Hoan Nguyen; Olivier Poch; Hélène Dollfus; Odile Lecompte; Susanne Kohl; José-Alain Sahel; Shomi S. Bhattacharya; Isabelle Audo
Congenital stationary night blindness (CSNB) is a clinically and genetically heterogeneous retinal disorder. Two forms can be distinguished clinically: complete CSNB (cCSNB) and incomplete CSNB. Individuals with cCSNB have visual impairment under low-light conditions and show a characteristic electroretinogram (ERG). The b-wave amplitude is severely reduced in the dark-adapted state of the ERG, representing abnormal function of ON bipolar cells. Furthermore, individuals with cCSNB can show other ocular features such as nystagmus, myopia, and strabismus and can have reduced visual acuity and abnormalities of the cone ERG waveform. The mode of inheritance of this form can be X-linked or autosomal recessive, and the dysfunction of four genes (NYX, GRM6, TRPM1, and GPR179) has been described so far. Whole-exome sequencing in one simplex cCSNB case lacking mutations in the known genes led to the identification of a missense mutation (c.983G>A [p.Cys328Tyr]) and a nonsense mutation (c.1318C>T [p.Arg440(∗)]) in LRIT3, encoding leucine-rich-repeat (LRR), immunoglobulin-like, and transmembrane-domain 3 (LRIT3). Subsequent Sanger sequencing of 89 individuals with CSNB identified another cCSNB case harboring a nonsense mutation (c.1151C>G [p.Ser384(∗)]) and a deletion predicted to lead to a premature stop codon (c.1538_1539del [p.Ser513Cysfs(∗)59]) in the same gene. Human LRIT3 antibody staining revealed in the outer plexiform layer of the human retina a punctate-labeling pattern resembling the dendritic tips of bipolar cells; similar patterns have been observed for other proteins implicated in cCSNB. The exact role of this LRR protein in cCSNB remains to be elucidated.
Nucleic Acids Research | 2012
Tien-Dao Luu; Alin Rusu; Vincent Walter; Benjamin Linard; Laetitia Poidevin; Raymond Ripp; Luc Moulinier; Jean Muller; Wolfgang Raffelsberger; Nicolas Wicker; Odile Lecompte; Julie D. Thompson; Olivier Poch; Hoan Nguyen
A major challenge in the post-genomic era is a better understanding of how human genetic alterations involved in disease affect the gene products. The KD4v (Comprehensible Knowledge Discovery System for Missense Variant) server allows to characterize and predict the phenotypic effects (deleterious/neutral) of missense variants. The server provides a set of rules learned by Induction Logic Programming (ILP) on a set of missense variants described by conservation, physico-chemical, functional and 3D structure predicates. These rules are interpretable by non-expert humans and are used to accurately predict the deleterious/neutral status of an unknown mutation. The web server is available at http://decrypthon.igbmc.fr/kd4v.
Database | 2012
Tien-Dao Luu; Alin-Mihai Rusu; Vincent Walter; Raymond Ripp; Luc Moulinier; Jean Muller; Thierry Toursel; Julie D. Thompson; Olivier Poch; Hoan Nguyen
The elucidation of the complex relationships linking genotypic and phenotypic variations to protein structure is a major challenge in the post-genomic era. We present MSV3d (Database of human MisSense Variants mapped to 3D protein structure), a new database that contains detailed annotation of missense variants of all human proteins (20 199 proteins). The multi-level characterization includes details of the physico-chemical changes induced by amino acid modification, as well as information related to the conservation of the mutated residue and its position relative to functional features in the available or predicted 3D model. Major releases of the database are automatically generated and updated regularly in line with the dbSNP (database of Single Nucleotide Polymorphism) and SwissVar releases, by exploiting the extensive Décrypthon computational grid resources. The database (http://decrypthon.igbmc.fr/msv3d) is easily accessible through a simple web interface coupled to a powerful query engine and a standard web service. The content is completely or partially downloadable in XML or flat file formats. Database URL: http://decrypthon.igbmc.fr/msv3d
Human Molecular Genetics | 2014
Isabelle Audo; Kinga Bujakowska; Elise Orhan; Said El Shamieh; Florian Sennlaub; Xavier Guillonneau; Aline Antonio; Christelle Michiels; Marie-Elise Lancelot; Mélanie Letexier; Jean-Paul Saraiva; Hoan Nguyen; Tien D. Luu; Thierry Léveillard; Olivier Poch; Hélène Dollfus; Michel Paques; Olivier Goureau; Saddek Mohand-Said; Shomi S. Bhattacharya; José-Alain Sahel; Christina Zeitz
Inherited retinal diseases are a group of clinically and genetically heterogeneous disorders for which a significant number of cases remain genetically unresolved. Increasing knowledge on underlying pathogenic mechanisms with precise phenotype-genotype correlation is, however, critical for establishing novel therapeutic interventions for these yet incurable neurodegenerative conditions. We report phenotypic and genetic characterization of a large family presenting an unusual autosomal dominant retinal dystrophy. Phenotypic characterization revealed a retinopathy dominated by inner retinal dysfunction and ganglion cell abnormalities. Whole-exome sequencing identified a missense variant (c.782A>C, p.Glu261Ala) in ITM2B coding for Integral Membrane Protein 2B, which co-segregates with the disease in this large family and lies within the 24.6 Mb interval identified by microsatellite haplotyping. The physiological role of ITM2B remains unclear and has never been investigated in the retina. RNA in situ hybridization reveals Itm2b mRNA in inner nuclear and ganglion cell layers within the retina, with immunostaining demonstrating the presence of the corresponding protein in the same layers. Furthermore, ITM2B in the retina co-localizes with its known interacting partner in cerebral tissue, the amyloid β precursor protein, critical in Alzheimer disease physiopathology. Interestingly, two distinct ITM2B mutations, both resulting in a longer protein product, had already been reported in two large autosomal dominant families with Alzheimer-like dementia but never in subjects with isolated retinal diseases. These findings should better define pathogenic mechanism(s) associated with ITM2B mutations underlying dementia or retinal disease and add a new candidate to the list of genes involved in inherited retinal dystrophies.
Human Mutation | 2010
Anne Friedrich; Nicolas Garnier; Nicolas Gagnière; Hoan Nguyen; Laurent-Philippe Albou; Valérie Biancalana; Emmanuel Bettler; Gilbert Deléage; Odile Lecompte; Jean Muller; Dino Moras; Jean-Louis Mandel; Thierry Toursel; Luc Moulinier; Olivier Poch
Understanding how genetic alterations affect gene products at the molecular level represents a first step in the elucidation of the complex relationships between genotypic and phenotypic variations, and is thus a major challenge in the postgenomic era. Here, we present SM2PH‐db (http://decrypthon.igbmc.fr/sm2ph), a new database designed to investigate structural and functional impacts of missense mutations and their phenotypic effects in the context of human genetic diseases. A wealth of up‐to‐date interconnected information is provided for each of the 2,249 disease‐related entry proteins (August 2009), including data retrieved from biological databases and data generated from a Sequence–Structure–Evolution Inference in Systems‐based approach, such as multiple alignments, three‐dimensional structural models, and multidimensional (physicochemical, functional, structural, and evolutionary) characterizations of mutations. SM2PH‐db provides a robust infrastructure associated with interactive analysis tools supporting in‐depth study and interpretation of the molecular consequences of mutations, with the more long‐term goal of elucidating the chain of events leading from a molecular defect to its pathology. The entire content of SM2PH‐db is regularly and automatically updated thanks to a computational grid data federation facilities provided in the context of the Decrypthon program. Hum Mutat 31:127–135, 2010.
Bioinformatics and Biology Insights | 2013
Hoan Nguyen; Tien-Dao Luu; Olivier Poch; Julie D. Thompson
Understanding the effects of genetic variation on the phenotype of an individual is a major goal of biomedical research, especially for the development of diagnostics and effective therapeutic solutions. In this work, we describe the use of a recent knowledge discovery from database (KDD) approach using inductive logic programming (ILP) to automatically extract knowledge about human monogenic diseases. We extracted background knowledge from MSV3d, a database of all human missense variants mapped to 3D protein structure. In this study, we identified 8,117 mutations in 805 proteins with known three-dimensional structures that were known to be involved in human monogenic disease. Our results help to improve our understanding of the relationships between structural, functional or evolutionary features and deleterious mutations. Our inferred rules can also be applied to predict the impact of any single amino acid replacement on the function of a protein. The interpretable rules are available at http://decrypthon.igbmc.fr/kd4v/.
knowledge discovery and data mining | 2014
Hoan Nguyen; Julie D. Thompson; Patrick Schutz; Olivier Poch
Successful application of translational medicine will require understanding the complex nature of disease, fueled by effective analysis of multidimensional ’omics’ measurements and systems-level studies. In this paper, we present a perspective — the intelligent integrative knowledge base (I2KB)— for data management, statistical analysis and knowledge discovery related to human disease. By building a bridge between patient associations, clinicians, experimentalists and modelers, I2KB will facilitate the emergence and propagation of systems medicine studies, which are a prerequisite for large-scaled clinical trial studies, efficient diagnosis, disease screening, drug target evaluation and development of new therapeutic strategies.
F1000Research | 2013
Tien-Dao Luu; Vincent Walter; Hoan Nguyen; Olivier Poch
The elucidation of the complex relationships linking genotypic and phenotypic variations to protein structure is a major challenge in the post-genomic era. We present MSV3d (Database of human MisSense Variants mapped to 3D protein structure), a new database that contains detailed annotation of missense variants of all human proteins (20 199 proteins). The multi-level characterization includes details of the physico-chemical changes induced by amino acid modification, as well as information related to the conservation of the mutated residue and its position relative to functional features in the available or predicted 3D model. Major releases of the database are automatically generated and updated regularly in line with the dbSNP (database of Single Nucleotide Polymorphism) and SwissVar releases, by exploiting the extensive Decrypthon computational grid resources. The database (http://decrypthon.igbmc.fr/msv3d) is easily accessible through a simple web interface coupled to a powerful query engine and a standard web service. The content is completely or partially downloadable in XML or flat file formats.
Ibm Journal of Research and Development | 2014
Hoan Nguyen; L. Michel; Julie D. Thompson; Olivier Poch