Hoang Vinh-Thang
Laval University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Hoang Vinh-Thang.
RSC Advances | 2015
Xiao Yuan Chen; Hoang Vinh-Thang; Antonio Avalos Ramirez; Denis Rodrigue
Biogas is a renewable energy source like solar and wind energies and mostly produced from anaerobic digestion (AD). The production of biogas is a well-established technology, but its commercial utilization is limited because on-site purification is needed before its transport or use. Biogas composition varies with the biomass digested and contains mainly methane (CH4) and carbon dioxide (CO2), as well as traces of hydrogen sulfide (H2S), ammonia (NH3), hydrogen (H2), nitrogen (N2), carbon monoxide (CO), oxygen (O2). In some cases dust particles and siloxanes are present. Several purification processes including pressurized water scrubbing, amine swing absorption, pressure swing adsorption, temperature swing adsorption, cryogenic separation and membrane technologies have been developed. Nevertheless, membrane technology is a relatively recent but very promising technology. Also, hybrid processes where membranes are combined with other processes are believed to have lower investment and operation costs compared with other processes. In this report, a discussion on the different materials used to produce membranes for gas separation is given including inorganic, organic and mixed matrix membranes, as well as polymer of intrinsic microporosity (PIM). Advantages and limitations for each type are discussed and comparisons are made in terms of permeability and diffusivity for a range of operating conditions.
Journal of Materials Chemistry | 2015
Nguyen Tien-Binh; Hoang Vinh-Thang; Xiao Yuan Chen; Denis Rodrigue
Hydroxyl-functionalized homo- and co-polyimides 6FDA–(DAM)x–(HAB)y (with x : y molar ratio of 1 : 0; 2 : 1; 1 : 1; 1 : 2) and two metal–organic frameworks (MOFs), MIL-53(Al) and NH2-MIL-53(Al) were synthesized for preparation of mixed matrix membranes (MMMs). The MOF loadings were varied over the range of 10–20 wt% for NH2-MIL-53(Al) and 10–15 wt% for MIL-53(Al). The incorporation of hydroxyl groups into the polyimide backbone is expected to improve the interfacial interaction between the polymer matrix and fillers, consequently, enhancing gas separation performance of MMMs. A big increase in glass transition temperature (Tg) for MMMs confirmed the polymer chain rigidification, which was caused by a strong interaction between the hydroxyl groups in the copolyimides and the amine groups in NH2-MIL-53(Al). Additionally, SEM results showed that the hydroxyl groups facilitated the particle dispersion in the MMMs, either was NH2-MIL-53(Al) or MIL-53 used as filler. Gas separation performances of MMMs were characterized by both CO2/CH4 pure gas and binary permeation measurements at 35 °C and 150 psi. The incorporation of NH2-MIL-53(Al) in the hydroxyl-copolyimides was found to significantly improve the CO2/CH4 separation factor while maintaining CO2 permeability of the MMMs as high as those of the neat corresponding copolyimides, therefore greatly enhancing the MMM separation performance. For example, the MMM prepared from 6FDA–DAM–HAB (1 : 1) copolyimide and 10 wt% NH2-MIL-53(Al) showed a permeability/selectivity behavior approaching the 2008 Robesons upper bound making it attractive for practical usage. The significant improvement in CO2/CH4 separation factor observed for the MMMs made of the hydroxyl-copolyimides and the amine-functionalized MOFs was due to (i) the enhanced polymer–filler compatibility originating from a mutual interaction between the polymer-functional moieties and the amine-functionalized MOF surface yielding defect-free MMMs and (ii) the high CO2/CH4 selective adsorption in the NH2-MIL-53(Al) framework.
RSC Advances | 2014
Xiao Yuan Chen; Hoang Vinh-Thang; Denis Rodrigue
Macrovoid structured mixed matrix membranes (MMMs) composed of nano-size (200 nm) silica particles and co-polyimide were prepared from 6FDA–ODA–DAM (6FDA = 4,4′-(hexafluoroiso-propylidene)diphthalic anhydride; ODA = 4,4′-oxidianiline; DAM = 1,3,5-trimethyl-2,6-phenylenediamine) with different proportions (1 : 1 and 1 : 4) and tetraethoxysilane (TEOS) via the sol–gel method. The separation performance of MMMs with 6FDA–ODA–DAM treated at high temperature (450 °C) was excellent for CO2/CH4 separation (for 6FOD–ODA–DAM (1 : 1): CO2 permeability ∼265 Barrer and CO2/CH4 selectivity ∼32; for 6FOD–ODA–DAM (1 : 4): CO2 permeability ∼302 Barrer and CO2/CH4 selectivity ∼25). Remarkably, the best membrane could resist pressure up to 600 psi without any loss of permselectivity. The CO2/CH4 separation performance of a series of silica–6FDA–ODA–DAM(11) MMMs with different SiO2 loadings is theoretically predicted using a modified Maxwell model where both gas permeability and macrovoid shape factor are simultaneously considered as adjustable parameters. Applying the optimized values, the modified Maxwell model predictions were in excellent agreement with experimental permeability data (less than 2% deviation).
Chemical Reviews | 2013
Hoang Vinh-Thang
Industrial & Engineering Chemistry Research | 2012
Xiao Yuan Chen; Hoang Vinh-Thang; Denis Rodrigue
Microporous and Mesoporous Materials | 2006
Qinglin Huang; Hoang Vinh-Thang; Amir Malekian; Mladen Eić; Do Trong-On
Langmuir | 2005
Hoang Vinh-Thang; Qinglin Huang; Mladen Eić; Do Trong-On
Journal of Power Sources | 2013
Foroughazam Afsahi; Hoang Vinh-Thang; Serguei D. Mikhailenko
Langmuir | 2006
Hoang Vinh-Thang; Qinglin Huang; Adrian Ungureanu; Mladen Eić; Do Trong-On
Journal of Membrane Science | 2016
Nguyen Tien-Binh; Hoang Vinh-Thang; Xiao Yuan Chen; Denis Rodrigue