Hoi-Hin Kwok
Hong Kong Baptist University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Hoi-Hin Kwok.
Biochemical Pharmacology | 2012
Hoi-Hin Kwok; Guan-Lun Guo; Justin Kai-Chi Lau; Yuen-Kit Cheng; Jiang-Rong Wang; Zhi-Hong Jiang; Man-Hong Keung; Nai-Ki Mak; Patrick Ying-Kit Yue; Ricky Ngok-Shun Wong
Ginsenosides are considered the major constituents that are responsible for most of the pharmacological actions of ginseng. However, some ginsenosides exist as stereoisomeric pairs, detailed and molecular exposition based on the structural differences of ginsenoside stereoisomers has not been emphasized in most studies. Here we explore the functional differences of ginsenoside Rg₃ stereoisomers on angiogenesis. In this study, we demonstrated the distinctive differential angiogenic activities of 20(S)-Rg₃ and 20(R)-Rg₃ stereoisomers. 20(S)-Rg₃ at micromolar concentration promotes human endothelial cells proliferation, migration and tube formation in vitro, as well as ex vivo endothelial sprouting. The effects induced by 20(S)-Rg₃ are significantly more potent than 20(R)-Rg₃. These effects are partially mediated through the activation of AKT/ERK-eNOS signaling pathways. Moreover, knockdown of peroxisome proliferator-activated receptor-gamma (PPARγ) by specific small interference RNA abolished the 20(S)-Rg₃-induced angiogenesis, indicating that PPARγ is responsible for mediating the angiogenic activity of Rg₃. Using reporter gene assay, the PPARγ agonist activity of 20(S)-Rg₃ has been found 10-fold higher than that of 20(R)-Rg₃. Computer modeling also revealed the differential binding is due to the chiral center of 20(S)-Rg₃ can form a critical hydrogen bond with Tyr473 of PPARγ ligand binding domain. The present study elucidated the differential angiogenic effects of Rg₃ stereoisomers by acting as agonist of PPARγ. The results shed light on the structural difference between two ginsenoside stereoisomers that can lead to significant differential physiological outcomes which should be carefully considered in the future development of ginsenoside-based therapeutics.
Biochemical Pharmacology | 2012
Hoi-Hin Kwok; Patrick Ying-Kit Yue; Nai-Ki Mak; Ricky Ngok-Shun Wong
Wrinkle formation is one of the primary characteristics of skin aging, the major cause of wrinkle is the loss of structural protein type I collagen in dermal layer of skin. Topical application of natural substances to reduce wrinkle is gaining attention in recent years. Although a number of polyphenoic compounds are suggested to prevent ultraviolet-induced wrinkle, very few of them are able to increase type I collagen synthesis directly. Ginseng has been known in folk medicine of its beneficial effect to skin. The present study investigate the effect of ginsenoside on type I collagen induction in human dermal fibroblasts. Ginsenoside Rb₁ was shown to induce type I collagen expression in dermal fibroblasts in a dose- and time-dependent manner. Recent studies suggest the important post-transcriptional regulatory role of microRNAs; here we demonstrated that miR-25 can directly inhibit type I collagen protein expression, and treatment of fibroblasts with Rb₁ can reduce the inhibition by decreasing miR-25 level. Furthermore, we identified that the nuclear receptor, peroxisome proliferator-activated receptor-delta (PPARδ) is the key mediator of Rb₁-induced type I collagen expression. Knockdown of PPARδ by small-interference RNA abolished the Rb₁-induced type I collagen production and reversed the Rb₁-suppressed miR-25 expression. These results demonstrated that ginsenoside Rb₁ can increase target gene expression through transcriptional pathway, at the same time, inhibit the corresponding miRNA expression to minimize the translation repression. Furthermore, this study provide solid support of ginsenoside Rb₁-induced type I collagen expression, which warrant further study in the dermatological application of ginsenosides in skin disorders.
Aaps Pharmscitech | 2014
Lin Wang; Aiping Lu; Zhi-Ling Yu; Ricky Ngok-Shun Wong; Zhaoxiang Bian; Hoi-Hin Kwok; Patrick Ying-Kit Yue; Limin Zhou; Hubiao Chen; Min Xu; Zhijun Yang
Ginsenoside Rb1 (Rb1) is the most predominant ginsenoside isolated from the roots of ginseng (Panax ginseng C. A. Meyer). This compound is active in various human biological pathways that are involved in human collagen synthesis and inhibition of cell apoptosis. In this study, the skin-whitening effects of Rb1 were investigated in B16 melanoma cells. Our results showed that Rb1 inhibited melanogenesis in α-melanocyte-stimulating hormone (α-MSH)-stimulated B16 cells in a dose-dependent manner, which collectively indicated that Rb1 may have skin-whitening effects and may be formulated into skin-whitening products for skin care. Accordingly, a ginsenoside collagen transdermal patch was developed as a vehicle to topically deliver Rb1 into pig skin. The percutaneous permeation, retention within skin, and release in vitro of Rb1 from seven transdermal patch formulas were studied. It was determined that the best formula for ginsenoside collagen transdermal patch is made of protein collagen hydrolysate powder (PCHP) 2.0% (w/w), methyl cellulose (MC) 0.5% (w/w), polyethyleneglycol 6000 (PEG6000) 0.5% (w/w), ginsenoside 0.036% (w/w), azone 0.4% (v/w), menthol 0.20% (w/w), and water.
Journal of Ginseng Research | 2016
Man-Hong Keung; Lai-Sheung Chan; Hoi-Hin Kwok; Ricky Ngok-Shun Wong; Patrick Ying-Kit Yue
Background Ginsenoside-Rg3, the pharmacologically active component of red ginseng, has been found to inhibit tumor growth, invasion, metastasis, and angiogenesis in various cancer models. Previously, we found that 20(R)-ginsenoside-Rg3 (Rg3) could inhibit angiogenesis. Since microRNAs (miRNAs) have been shown to affect many biological processes, they might play an important role in ginsenoside-mediated angiomodulation. Methods In this study, we examined the underlying mechanisms of Rg3-induced angiosuppression through modulating the miRNA expression. In the miRNA-expression profiling analysis, six miRNAs and three miRNAs were found to be up- or down-regulated in vascular-endothelial-growth-factor-induced human-umbilical-vein endothelial cells (HUVECs) after Rg3 treatment, respectively. Results A computational prediction suggested that mature hsa-miR-520h (miR-520h) targets ephrin receptor (Eph) B2 and EphB4, and hence, affecting angiogenesis. The up-regulation of miR-520h after Rg3 treatment was validated by quantitative real-time polymerase chain reaction, while the protein expressions of EphB2 and EphB4 were found to decrease, respectively. The mimics and inhibitors of miR-520h were transfected into HUVECs and injected into zebra-fish embryos. The results showed that overexpression of miR-520h could significantly suppress the EphB2 and EphB4 protein expression, proliferation, and tubulogenesis of HUVECs, and the subintestinal-vessel formation of the zebra fish. Conclusion These results might provide further information on the mechanism of Rg3-induced angiosuppression and the involvement of miRNAs in angiogenesis.
Chinese Medicine | 2014
Carmen Ka-Man Law; Hoi-Hin Kwok; Po-Ying Poon; Chi-Chiu Lau; Zhi-Hong Jiang; William Chi-Shing Tai; Wendy W.L. Hsiao; Nai-Ki Mak; Patrick Ying-Kit Yue; Ricky Ngok-Shun Wong
BackgroundNasopharyngeal carcinoma (NPC) has a high incidence rate in Southern China. Although there are conventional therapies, the side effects and toxicities are not always tolerable for patients. Recently, the tumoricidal effect of ginsenosides on different cancer cells has been studied. This study aims to investigate the anti-cancer effect of ginsenosides on NPC cells and their underlying mechanism.MethodsThe cytotoxicity of ginsenosides on NPC cell line HK-1 was measured by MTT assay. Apoptosis was detected by propidium iodide staining followed by flow cytometry. A xenograft tumor model was established by injecting nude mice with HK-1 cells. The activation of caspases and apoptosis-inducing factor (AIF) were evaluated by Western blot analysis. Nuclear translocation of AIF was also studied by immunofluorescence staining. Mitochondrial membrane potential was measured by JC-1 dye using flow cytometry.ResultsFour ginsenosides, 20 (S)-Rh2, compound K (CK), panaxadiol (PD) and protopanaxadiol (PPD), induced apoptotic cell death in HK-1 cells in a concentration-dependent manner. CK inhibited HK-1 xenograft tumor growth most extensively and depleted mitochondrial membrane potential depolarization and induced translocation of AIF from cytoplasm to nucleus in HK-1 cells. In addition, depletion of AIF by siRNA abolished CK-induced HK-1 cell death.ConclusionGinsenoside CK-induced apoptosis of HK-1 cells was mediated by the mitochondrial pathway and could significantly inhibit tumor growth in vivo.
Cellular and Molecular Life Sciences | 2017
Hoi-Hin Kwok; Po-Ying Poon; Kylie Hin-Man Mak; Lin-Yao Zhang; Pei Liu; Huoming Zhang; Nai-Ki Mak; Patrick Ying-Kit Yue; Ricky Ngok-Shun Wong
MicroRNAs (miRNAs) are a family of non-coding RNAs that play crucial roles in regulating various normal cellular responses. Recent studies revealed that the canonical miRNA biogenesis pathway is subject to sophisticated regulation. Hormonal control of miRNA biogenesis by androgen and estrogen has been demonstrated, but the direct effects of the glucocorticoid receptor (GR) on miRNA biogenesis are unknown. This study revealed the role of GR in miRNA maturation. We showed that two GR agonists, dexamethasone and ginsenoside-Rg1 rapidly suppressed the expression of mature miR-15b, miR-23a, and miR-214 in human endothelial cells. RNA pulldown coupled with proteomic analysis identified GTPase-activating protein (SH3 domain) binding protein 1 (G3BP1) as one of the RNA-binding proteins mediating GR-regulated miRNA maturation. Activated GR induced phosphorylation of v-AKT Murine Thymoma Viral Oncogene Homologue (AKT) kinase, which in turn phosphorylated and promoted nuclear translocation of G3BP1. The nuclear G3BP1 bound to the G3BP1 consensus sequence located on primary miR-15b~16-2 and miR-23a~27a~24-2 to inhibit their maturation. The findings from this study have advanced our understanding of the non-genomic effects of GR in the vascular system.
Scientific Reports | 2016
Hoi-Hin Kwok; Po-Ying Poon; Siu-Ping Fok; Patrick Ying-Kit Yue; Nai-Ki Mak; Michael Chi-Wai Chan; J. S. M. Peiris; Ricky Ngok-Shun Wong
Influenza A virus (IAV) poses global threats to human health. Acute respiratory distress syndrome and multi-organ dysfunction are major complications in patients with severe influenza infection. This may be explained by the recent studies which highlighted the role of the pulmonary endothelium as the center of innate immune cells recruitment and excessive pro-inflammatory cytokines production. In this report, we examined the potential immunomodulatory effects of two indirubin derivatives, indirubin-3′-(2,3-dihydroxypropyl)-oximether (E804) and indirubin-3′-oxime (E231), on IAV (H9N2) infected-human pulmonary microvascular endothelial cells (HPMECs). Infection of H9N2 on HPMECs induced a high level of chemokines and cytokines production including IP-10, RANTES, IL-6, IFN-β and IFN-γ1. Post-treatment of E804 or E231 could significantly suppress the production of these cytokines. H9N2 infection rapidly triggered the activation of innate immunity through phosphorylation of signaling molecules including mitogen-activated protein kinases (MAPKs) and signal transducer and activator of transcription (STAT) proteins. Using specific inhibitors or small-interfering RNA, we confirmed that indirubin derivatives can suppress H9N2-induced cytokines production through MAPKs and STAT3 signaling pathways. These results underscore the immunomodulatory effects of indirubin derivatives on pulmonary endothelium and its therapeutic potential on IAV-infection.
Journal of Ginseng Research | 2017
Wai-Nam Sung; Hoi-Hin Kwok; Man Hee Rhee; Patrick Ying-Kit Yue; Ricky Ngok-Shun Wong
Background Our previous studies have demonstrated that ginsenoside-Rg1 can promote angiogenesis in vitro and in vivo through activation of the glucocorticoid receptor (GR). Furthermore, microRNA (miRNA) expression profiling has shown that Rg1 can modulate the expression of a subset of miRNAs to induce angiogenesis. Moreover, Rb1 was shown to be antiangiogenic through activation of a different pathway. These studies highlight the important functions of miRNAs on ginseng-regulated physiological processes. The aim of this study was to determine the angiogenic properties of Korean Red Ginseng extract (KGE). Methods and Results Combining in vitro and in vivo data, KGE at 500 μg/mL was found to induce angiogenesis. According to the miRNA sequencing, 484 differentially expressed miRNAs were found to be affected by KGE. Among them, angiogenic-related miRNAs; miR-15b, -23a, -214, and -377 were suppressed by KGE. Meanwhile, their corresponding angiogenic proteins were stimulated, including vascular endothelial growth factor, vascular endothelial growth factor receptor-2, endothelial nitric oxide synthase, and MET transmembrane tyrosine kinase. The miRNAs-regulated signaling pathways of KGE were then found by Cignal 45-Pathway Reporter Array, proving that KGE could activate GR. Conclusion KGE was found capable of inducing angiogenesis both in vivo and in vitro models through activating GR. This study provides a valuable insight into the angiogenic mechanisms depicted by KGE in relation to specific miRNAs.
Frontiers in Pharmacology | 2017
Huixia Lu; Xunian Zhou; Hoi-Hin Kwok; Mei Dong; Zhaoqiang Liu; Po-Ying Poon; Xiaorong Luan; Ricky Ngok-Shun Wong
Angiogenesis is the formation of new blood vessels from the existing vasculature, which is involved in multiple biological processes, including atherosclerosis, ischemic heart disease, and cancer. Ginsenoside-Rb1 (Rb1), the most abundant ginsenoside isolated form Panax ginseng, has been identified as a promising anti-angiogenic agent via the up-regulation of PEDF. However, the underlying molecular mechanisms still unknown. In the present study, human umbilical vein endothelial cells (HUVECs) were selected to perform in vitro assays. Rb1 (0–20 nM) treatment induced pigment epithelial-derived factor (PEDF) protein expression in concentration and time-dependent manners. Interestingly, it was also demonstrated that the exposure of Rb1 (10 nM) could increase PEDF protein expression without any alteration on mRNA level, suggesting the involvement of posttranscriptional regulation. Furthermore, bioinformatics predictions indicated the regulation of miR-33a on PEDF mRNA 3′-UTR, which was further confirmed by luciferase reporter gene assay and real-time PCR. Over-expression of pre-miR-33a was found to regress partly Rb1-mediated PEDF increment and anti-angiogenic effect in HUVECs. Additionally, Rb1-reduced miR-33a and increased PEDF expression was prevented by pre-incubation with peroxisome proliferator-activated receptor-γ (PPAR-γ) antagonist (GW9662) or transfection with PPAR-γ siRNA in HUVECs. Taken together, our findings demonstrated that Rb1 exerted anti-angiogenic effects through PPAR-γ signaling pathway via modulating miR-33a and PEDF expressions. Thus, Rb1 may have the potential of being developed as an anti-angiogenic agent, however, further appropriate studies are warranted to evaluate the effect in vivo.
Biochemical Pharmacology | 2012
Yuk-Kit Chan; Hoi-Hin Kwok; Lai-Sheung Chan; Kelvin Sze-Yin Leung; Jue Shi; Nai-Ki Mak; Ricky Ngok-Shun Wong; Patrick Ying-Kit Yue