Hoi Man Wong
University of Hong Kong
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Hoi Man Wong.
Biomaterials | 2010
Hoi Man Wong; Kelvin W.K. Yeung; Kin On Lam; Vivian Tam; Paul K. Chu; Keith D. K. Luk; Kenneth M.C. Cheung
Magnesium and its alloys may potentially be applied as degradable metallic materials in orthopaedic implantations due to their degradability and resemblance to human cortical bone. However, the high corrosion rate and accumulation of hydrogen gas upon degradation hinders its clinical application. In this study, we adopt a new approach to control the corrosion rate by coating a controllable polymeric membrane fabricated by polycaprolactone and dichloromethane onto magnesium alloys, in which the pore size was controlled during the manufacturing process. The addition of the polymeric membrane was found to reduce the degradation rate of magnesium, and the bulk mechanical properties were shown to be maintained upon degradation. The in-vitro studies indicated good cytocompatibility of eGFP and SaOS-2 osteoblasts with the polymer-coated samples, which was not observed for the uncoated samples. The in-vivo study indicated that the uncoated sample degraded more rapidly than that of the polymer-coated samples. Although new bone formation was found on both samples, as determined by Micro-CT, higher volumes of new bone were observed on the polymer-coated samples. Histological analysis indicated no inflammation, necrosis or hydrogen gas accumulation on either of the samples during degradation. Collectively, these data suggest that the use of polymeric membrane may be potentially applied for future clinical use.
Biomaterials | 2013
Ying Zhao; Hoi Man Wong; Wenhao Wang; Penghui Li; Zushun Xu; Eva Y.W. Chong; Chun Hoi Yan; Kelvin W.K. Yeung; Paul K. Chu
Porous biomaterials with the proper three-dimensional (3D) surface network can enhance biological functionalities especially in tissue engineering, but it has been difficult to accomplish this on an important biopolymer, polyetheretherketone (PEEK), due to its inherent chemical inertness. In this study, a 3D porous and nanostructured network with bio-functional groups is produced on PEEK by sulfonation and subsequent water immersion. Two kinds of sulfonation-treated PEEK (SPEEK) samples, SPEEK-W (water immersion and rinsing after sulfonation) and SPEEK-WA (SPEEK-W with further acetone rinsing) are prepared. The surface characteristics, in vitro cellular behavior, in vivo osseointegration, and apatite-forming ability are systematically investigated by X-ray photoelectron spectroscopy, Fourier-transform infrared spectroscopy, scanning electron microscopy, cell adhesion and cell proliferation assay, real-time RT-PCR analysis, micro-CT evaluation, push-out tests, and immersion tests. SPEEK-WA induces pre-osteoblast functions including initial cell adhesion, proliferation, and osteogenic differentiation in vitro as well as substantially enhanced osseointegration and bone-implant bonding strength in vivo and apatite-forming ability. Although SPEEK-W has a similar surface morphology and chemical composition as SPEEK-WA, its cytocompatibility is inferior due to residual sulfuric acid. Our results reveal that the pre-osteoblast functions, bone growth, and apatite formation on the SPEEK surfaces are affected by many factors, including positive effects introduced by the 3D porous structure and SO3H groups as well as negative ones due to the low pH environment. Surface functionalization broadens the use of PEEK in orthopedic implants.
Biomaterials | 2013
Hoi Man Wong; Ying Zhao; Vivian Tam; Shuilin Wu; Paul K. Chu; Yufeng Zheng; Michael Kai Tsun To; Frankie Leung; Keith D. K. Luk; Kenneth M.C. Cheung; Kelvin W.K. Yeung
A newly developed magnesium implant is used to stimulate bone formation in vivo. The magnesium implant after undergoing dual aluminum and oxygen plasma implantation is able to suppress rapid corrosion, leaching of magnesium ions, as well as hydrogen gas release from the biodegradable alloy in simulated body fluid (SBF). No released aluminum is detected from the SBF extract and enhanced corrosion resistance properties are confirmed by electrochemical tests. In vitro studies reveal enhanced growth of GFP mouse osteoblasts on the aluminum oxide coated sample, but not on the untreated sample. In addition to that a small amount (50 ppm) of magnesium ions can enhance osteogenic differentiation as reported previously, our present data show a low concentration of hydrogen can give rise to the same effect. To compare the bone volume change between the plasma-treated magnesium implant and untreated control, micro-computed tomography is performed and the plasma-treated implant is found to induce significant new bone formation adjacent to the implant from day 1 until the end of the animal study. On the contrary, bone loss is observed during the first week post-operation from the untreated magnesium sample. Owing to the protection offered by the Al2O3 layer, the plasma-treated implant degrades more slowly and the small amount of released magnesium ions stimulate new bone formation locally as revealed by histological analyses. Scanning electron microscopy discloses that the Al2O3 layer at the bone-implant interface is still present two months after implantation. In addition, no inflammation or tissue necrosis is observed from both treated and untreated implants. These promising results suggest that the plasma-treated magnesium implant can stimulate bone formation in vivo in a minimal invasive way and without causing post-operative complications.
Biomaterials | 2013
Hoi Man Wong; Shuilin Wu; Paul K. Chu; Shuk Han Cheng; Keith D. K. Luk; Kenneth M.C. Cheung; Kelvin W.K. Yeung
In this paper, we describe a new biodegradable composite composed of polycaprolactone and magnesium. Incorporation of magnesium micro-particles into the polycaprolactone matrix yields mechanical properties close to those of human cancellous bone, and in vitro studies indicate that the silane-coated Mg/PCL composites have excellent cytocompatibility and osteoblastic differentiation properties. The bioactivity of the composites is manifested by the formation of calcium and phosphate after immersion in simulated body fluids. The bulk mechanical properties can be maintained for 2 months before obvious degradation takes place. The in vivo animal study reveals a larger amount of new bone formation on the silane-coated Mg/PCL composites compared to conventional PMMA and pure polycaprolactone and our results suggest potential clinical applications of the sliane-coated Mg/PCL composites.
ACS Applied Materials & Interfaces | 2013
Ying Zhao; Sze Man Wong; Hoi Man Wong; Shuilin Wu; Tao Hu; Kelvin W.K. Yeung; Paul K. Chu
Growth of bony tissues on titanium biomedical implants can be time-consuming, thereby prolonging recovery and hospitalization after surgery and a method to improve and expedite tissue-implant integration and healing is thus of scientific and clinical interests. In this work, nitrogen and carbon plasma immersion ion implantation (N-PIII and C-PIII) is conducted to modify Ti-6Al-4V to produce a graded surface layer composed of TiN and TiC, respectively. Both PIII processes do not significantly alter the surface hydrophilicity but increase the surface roughness and corrosion resistance. In vitro studies disclose improved cell adhesion and proliferation of MC3T3-E1 preosteoblasts and L929 fibroblasts after PIII. Micro-CT evaluation conducted 1 to 12 weeks after surgery reveals larger average bone volumes and less bone resorption on the N-PIII and C-PIII titanium alloy pins than the unimplanted one at every time point. The enhancements observed from both the in vitro and in vivo studies can be attributed to the good cytocompatibility, roughness, and corrosion resistance of the TiN and TiC structures which stimulate the response of preosteoblasts and fibroblasts and induce early bone formation. Comparing the two PIII processes, N-PIII is more effective and our results suggest a simple and practical means to improve the surface biocompatibility of medical-grade titanium alloy implants.
Materials Science and Engineering: C | 2013
Cheng Zhu Liao; Kai Li; Hoi Man Wong; Wing Yin Tong; Kelvin W.K. Yeung; S. C. Tjong
Multi-walled carbon nanotubes (MWNTs) of 0.1 and 0.3 wt.% and hydoxyapatite nanorods (nHAs) of 8-20 wt.% were incorporated into polypropylene (PP) to form biocomposites using melt-compounding and injection molding techniques. The structural, mechanical, thermal and in vitro cell responses of the PP/MWNT-nHA hybrids were investigated. Tensile and impact tests demonstrated that the MWNT additions are beneficial in enhancing the stiffness, tensile strength and impact toughness of the PP/nHA nanocomposites. According to thermal analysis, the nHA and MWNT fillers were found to be very effective to improve dimensional and thermal stability of PP. The results of osteoblast cell cultivation and dimethyl thiazolyl diphenyl tetrazolium (MTT) tests showed that the PP/MWNT-nHA nanocomposites are biocompatible. Such novel PP/MWNT-nHA hybrids are considered to be potential biomaterials for making orthopedic bone implants.
International Journal of Nanomedicine | 2014
Cheng Zhu Liao; Hoi Man Wong; Kelvin W.K. Yeung; S. C. Tjong
This study focuses on the design, fabrication, microstructural and property characterization, and biocompatibility evaluation of polypropylene (PP) reinforced with carbon nanofiber (CNF) and hydroxyapatite nanorod (HANR) fillers. The purpose is to develop advanced PP/CNF–HANR hybrids with good mechanical behavior, thermal stability, and excellent biocompatibility for use as craniofacial implants in orthopedics. Several material-examination techniques, including X-ray diffraction, Fourier-transform infrared spectroscopy, scanning electron microscopy, thermogravimetric analysis, differential scanning calorimetry, tensile tests, and impact measurement are used to characterize the microstructural, mechanical, and thermal properties of the hybrids. Furthermore, osteoblastic cell cultivation and colorimetric assay are also employed for assessing their viability on the composites. The CNF and HANR filler hybridization yields an improvement in Young’s modulus, impact strength, thermal stability, and biocompatibility of PP. The PP/2% CNF–20% HANR hybrid composite is found to exhibit the highest elastic modulus, tensile strength, thermal stability, and biocompatibility.
Polymers | 2016
Chen Liu; Hoi Man Wong; Kelvin W.K. Yeung; S. C. Tjong
Graphene oxide (GO) and a nanohydroxyapatite rod (nHA) of good biocompatibility were incorporated into polylactic acid (PLA) through electrospinning to form nanocomposite fiber scaffolds for bone tissue engineering applications. The preparation, morphological, mechanical and thermal properties, as well as biocompatibility of electrospun PLA scaffolds reinforced with GO and/or nHA were investigated. Electron microscopic examination and image analysis showed that GO and nHA nanofillers refine the diameter of electrospun PLA fibers. Differential scanning calorimetric tests showed that nHA facilitates the crystallization process of PLA, thereby acting as a nucleating site for the PLA molecules. Tensile test results indicated that the tensile strength and elastic modulus of the electrospun PLA mat can be increased by adding 15 wt % nHA. The hybrid nanocomposite scaffold with 15 wt % nHA and 1 wt % GO fillers exhibited higher tensile strength amongst the specimens investigated. Furthermore, nHA and GO nanofillers enhanced the water uptake of PLA. Cell cultivation, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and alkaline phosphatase tests demonstrated that all of the nanocomposite scaffolds exhibit higher biocompatibility than the pure PLA mat, particularly for the scaffold with 15 wt % nHA and 1 wt % GO. Therefore, the novel electrospun PLA nanocomposite scaffold with 15 wt % nHA and 1 wt % GO possessing a high tensile strength and modulus, as well as excellent cell proliferation is a potential biomaterial for bone tissue engineering applications.
Journal of Biomedical Materials Research Part B | 2015
Ling Ren; Hoi Man Wong; Chun Hoi Yan; Kelvin W.K. Yeung; Ke Yang
A newly developed copper-bearing stainless steel (Cu-SS) by directly immobilizing proper amount of Cu into a medical stainless steel (317L SS) during the metallurgical process could enable continuous release of trace amount of Cu(2+) ions, which play the key role to offer the multi-biofunctions of the stainless steel, including the osteogenic ability in the present study. The results of in vitro experiments clearly demonstrated that Cu(2+) ions from Cu-SS could promote the osteogenic differentiation by stimulating the Alkaline phosphatase enzyme activity and the osteogenic gene expressions (Col1a1, Opn, and Runx2), and enhancing the adhesion and proliferation of osteoblasts cultured on its surface. The in vivo test further proved that more new bone tissue formed around the Cu-SS implant with more stable bone-to-implant contact in comparison with the 317L SS. In addition, Cu-SS showed satisfied biocompatibility according to the results of in vitro cytotoxicity and in vivo histocompatibility, and its daily released amount of Cu(2+) ions in physiological saline solution was at trace level of ppb order (1.4 ppb/cm(2) ), which is rather safe to human health. Apart from these results, it was also found that Cu-SS could inhibit the happening of inflammation with lower TNF-α expression in the bone tissue post implantation compared with 317L SS. In addition to good biocompatibility, the overall findings demonstrated that the Cu-SS possessed obvious ability of promoting osteogenesis, indicating a unique application advantage in orthopedics.
RSC Advances | 2015
Chen Liu; Kai Wang Chan; Jie Shen; Hoi Man Wong; Kelvin W.K. Yeung; S. C. Tjong
Designing bulk polymer composite materials with firmly embedded nanofillers having good biocompatibility, high bactericidal activity and large scale production capability is considered of technological importance. Biodegradable polylactic acid (PLA) with 18 wt% hydroxyapatite nanorod (nHA) and silver nanoparticle (AgNP) of different loadings were fabricated by melt-compounding process. Hybridizing nHA with AgNP fillers in the PLA matrix permitted efficient attachment and proliferation of osteoblasts and good bactericidal ability of the resulting nanocomposites. This study aimed to evaluate the biodegradation, antibacterial ability, bioactivity and cytotoxicity of melt-compounded PLA/18% nHA–Ag hybrids using solution immersion, water contact angle, agar disk diffusion, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay and biomineralization measurements. Weight-loss and water contact angle measurements showed that the nHA and Ag nanofillers increase the degradation rate and hydrophilicity of PLA, respectively; AgNPs were more effective than nHA for those tests. Disk diffusion test results demonstrated that the PLA/18% nHA–Ag hybrids show high bactericidal activity against Escherichia coli and moderate activity against Staphylococcus aureus. MTT test results revealed that high AgNP contents (18 and 25 wt%) in the PLA hybrids inhibit the proliferation of osteoblasts. However, composite hybrids with low loading Ag levels (2 and 6 wt%) showed good biocompatibility. Such hybrids maintained a good balance between antibacterial activity and cytocompatibility. Biomineralization test revealed that a dense apatite layer can be fully developed on the surfaces of PLA/18% nHA–Ag hybrids. The development of industrially scalable, efficient and cost effective polymer composite hybrids with good osteoconductivity and great bactericidal activity opens new perspective for bone tissue engineering applications.