Hojoong Kwak
Cornell University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Hojoong Kwak.
Annual Review of Genetics | 2013
Hojoong Kwak; John T. Lis
Elongation is becoming increasingly recognized as a critical step in eukaryotic transcriptional regulation. Although traditional genetic and biochemical studies have identified major players of transcriptional elongation, our understanding of the importance and roles of these factors is evolving rapidly through the recent advances in genome-wide and single-molecule technologies. Here, we focus on how elongation can modulate the transcriptional outcome through the rate-liming step of RNA polymerase II (Pol II) pausing near promoters and how the participating factors were identified. Among the factors we describe are the pausing factors--NELF (negative elongation factor) and DSIF (DRB sensitivity-inducing factor)--and P-TEFb (positive elongation factor b), which is the key player in pause release. We also describe the high-resolution view of Pol II pausing and propose nonexclusive models for how pausing is achieved. We then discuss Pol II elongation through the bodies of genes and the roles of FACT and SPT6, factors that allow Pol II to move through nucleosomes.
eLife | 2014
Iris Jonkers; Hojoong Kwak; John T. Lis
Production of mRNA depends critically on the rate of RNA polymerase II (Pol II) elongation. To dissect Pol II dynamics in mouse ES cells, we inhibited Pol II transcription at either initiation or promoter-proximal pause escape with Triptolide or Flavopiridol, and tracked Pol II kinetically using GRO-seq. Both inhibitors block transcription of more than 95% of genes, showing that pause escape, like initiation, is a ubiquitous and crucial step within the transcription cycle. Moreover, paused Pol II is relatively stable, as evidenced from half-life measurements at ∼3200 genes. Finally, tracking the progression of Pol II after drug treatment establishes Pol II elongation rates at over 1000 genes. Notably, Pol II accelerates dramatically while transcribing through genes, but slows at exons. Furthermore, intergenic variance in elongation rates is substantial, and is influenced by a positive effect of H3K79me2 and negative effects of exon density and CG content within genes. DOI: http://dx.doi.org/10.7554/eLife.02407.001
PLOS Genetics | 2014
P. Satyaki; Tawny N. Cuykendall; Kevin H.-C. Wei; Nicholas J. Brideau; Hojoong Kwak; S. Aruna; Patrick M. Ferree; Shuqing Ji; Daniel A. Barbash
Hybrid incompatibilities (HIs) cause reproductive isolation between species and thus contribute to speciation. Several HI genes encode adaptively evolving proteins that localize to or interact with heterochromatin, suggesting that HIs may result from co-evolution with rapidly evolving heterochromatic DNA. Little is known, however, about the intraspecific function of these HI genes, the specific sequences they interact with, or the evolutionary forces that drive their divergence. The genes Hmr and Lhr genetically interact to cause hybrid lethality between Drosophila melanogaster and D. simulans, yet mutations in both genes are viable. Here, we report that Hmr and Lhr encode proteins that form a heterochromatic complex with Heterochromatin Protein 1 (HP1a). Using RNA-Seq analyses we discovered that Hmr and Lhr are required to repress transcripts from satellite DNAs and many families of transposable elements (TEs). By comparing Hmr and Lhr function between D. melanogaster and D. simulans we identify several satellite DNAs and TEs that are differentially regulated between the species. Hmr and Lhr mutations also cause massive overexpression of telomeric TEs and significant telomere lengthening. Hmr and Lhr therefore regulate three types of heterochromatic sequences that are responsible for the significant differences in genome size and structure between D. melanogaster and D. simulans and have high potential to cause genetic conflicts with host fitness. We further find that many TEs are overexpressed in hybrids but that those specifically mis-expressed in lethal hybrids do not closely correlate with Hmr function. Our results therefore argue that adaptive divergence of heterochromatin proteins in response to repetitive DNAs is an important underlying force driving the evolution of hybrid incompatibility genes, but that hybrid lethality likely results from novel epistatic genetic interactions that are distinct to the hybrid background.
Nature Protocols | 2016
Dig Bijay Mahat; Hojoong Kwak; Gregory T. Booth; Iris Jonkers; Charles G. Danko; Ravi K Patel; Colin T Waters; Katie Munson; Leighton J. Core; John T. Lis
We provide a protocol for precision nuclear run-on sequencing (PRO-seq) and its variant, PRO-cap, which map the location of active RNA polymerases (PRO-seq) or transcription start sites (TSSs) (PRO-cap) genome-wide at high resolution. The density of RNA polymerases at a particular genomic locus directly reflects the level of nascent transcription at that region. Nuclei are isolated from cells and, under nuclear run-on conditions, transcriptionally engaged RNA polymerases incorporate one or, at most, a few biotin-labeled nucleotide triphosphates (biotin-NTPs) into the 3′ end of nascent RNA. The biotin-labeled nascent RNA is used to prepare sequencing libraries, which are sequenced from the 3′ end to provide high-resolution positional information for the RNA polymerases. PRO-seq provides much higher sensitivity than ChIP-seq, and it generates a much larger fraction of usable sequence reads than ChIP-seq or NET-seq (native elongating transcript sequencing). Similarly to NET-seq, PRO-seq maps the RNA polymerase at up to base-pair resolution with strand specificity, but unlike NET-seq it does not require immunoprecipitation. With the protocol provided here, PRO-seq (or PRO-cap) libraries for high-throughput sequencing can be generated in 4–5 working days. The method has been applied to human, mouse, Drosophila melanogaster and Caenorhabditis elegans cells and, with slight modifications, to yeast.
PLOS Genetics | 2014
John M. Pagano; Hojoong Kwak; Colin T Waters; Rebekka O. Sprouse; Brian S. White; Abdullah Ozer; Kylan Szeto; David Shalloway; Harold G. Craighead; John T. Lis
The four-subunit Negative Elongation Factor (NELF) is a major regulator of RNA Polymerase II (Pol II) pausing. The subunit NELF-E contains a conserved RNA Recognition Motif (RRM) and is proposed to facilitate Poll II pausing through its association with nascent transcribed RNA. However, conflicting ideas have emerged for the function of its RNA binding activity. Here, we use in vitro selection strategies and quantitative biochemistry to identify and characterize the consensus NELF-E binding element (NBE) that is required for sequence specific RNA recognition (NBE: CUGAGGA(U) for Drosophila). An NBE-like element is present within the loop region of the transactivation-response element (TAR) of HIV-1 RNA, a known regulatory target of human NELF-E. The NBE is required for high affinity binding, as opposed to the lower stem of TAR, as previously claimed. We also identify a non-conserved region within the RRM that contributes to the RNA recognition of Drosophila NELF-E. To understand the broader functional relevance of NBEs, we analyzed promoter-proximal regions genome-wide in Drosophila and show that the NBE is enriched +20 to +30 nucleotides downstream of the transcription start site. Consistent with the role of NELF in pausing, we observe a significant increase in NBEs among paused genes compared to non-paused genes. In addition to these observations, SELEX with nuclear run-on RNA enrich for NBE-like sequences. Together, these results describe the RNA binding behavior of NELF-E and supports a biological role for NELF-E in promoter-proximal pausing of both HIV-1 and cellular genes.
Cell Reports | 2014
Isabel X. Wang; Leighton J. Core; Hojoong Kwak; Lauren K. Brady; Alan Bruzel; Lee McDaniel; Allison L. Richards; Ming Wu; Christopher Grunseich; John T. Lis; Vivian G. Cheung
RNA sequences are expected to be identical to their corresponding DNA sequences. Here, we found all 12 types of RNA-DNA sequence differences (RDDs) in nascent RNA. Our results show that RDDs begin to occur in RNA chains ~55 nt from the RNA polymerase II (Pol II) active site. These RDDs occur so soon after transcription that they are incompatible with known deaminase-mediated RNA-editing mechanisms. Moreover, the 55 nt delay in appearance indicates that they do not arise during RNA synthesis by Pol II or as a direct consequence of modified base incorporation. Preliminary data suggest that RDD and R-loop formations may be coupled. These findings identify sequence substitution as an early step in cotranscriptional RNA processing.
Genes & Development | 2014
Martin S. Buckley; Hojoong Kwak; Warren R. Zipfel; John T. Lis
The kinetics with which promoter-proximal paused RNA polymerase II (Pol II) undergoes premature termination versus productive elongation is central to understanding underlying mechanisms of metazoan transcription regulation. To assess the fate of Pol II quantitatively, we tracked photoactivatable GFP-tagged Pol II at uninduced Hsp70 on polytene chromosomes and showed that Pol II is stably paused with a half-life of 5 min. Biochemical analysis of short nascent RNA from Hsp70 reveals that this half-life is determined by two comparable rates of productive elongation and premature termination of paused Pol II. Importantly, heat shock dramatically increases elongating Pol II without decreasing termination, indicating that regulation acts at the step of paused Pol II entry to productive elongation.
Cell Reports | 2015
Ian C. Welsh; Hojoong Kwak; Frances L. Chen; Melissa Werner; Lindsay S. Shopland; Charles G. Danko; John T. Lis; Min Zhang; James F. Martin; Natasza A. Kurpios
Expression of Pitx2 on the left side of the embryo patterns left-right (LR) organs including the dorsal mesentery (DM), whose asymmetric cell behavior directs gut looping. Despite the importance of organ laterality, chromatin-level regulation of Pitx2 remains undefined. Here, we show that genes immediately neighboring Pitx2 in chicken and mouse, including a long noncoding RNA (Pitx2 locus-asymmetric regulated RNA or Playrr), are expressed on the right side and repressed by Pitx2. CRISPR/Cas9 genome editing of Playrr, 3D fluorescent in situ hybridization (FISH), and variations of chromatin conformation capture (3C) demonstrate that mutual antagonism between Pitx2 and Playrr is coordinated by asymmetric chromatin interactions dependent on Pitx2 and CTCF. We demonstrate that transcriptional and morphological asymmetries driving gut looping are mirrored by chromatin architectural asymmetries at the Pitx2 locus. We propose a model whereby Pitx2 auto-regulation directs chromatin topology to coordinate LR transcription of this locus essential for LR organogenesis.
bioRxiv | 2017
Tinyi Chu; Edward J. Rice; Gregory T. Booth; Hans H Salamanca; Zhong Wang; Leighton Core; Sharon L. Longo; Robert John Corona; Lawrence S. Chin; John T. Lis; Hojoong Kwak; Charles G. Danko
Non-coding elements in our genomes that play critical roles in complex disease are frequently marked by highly unstable RNA species. Sequencing nascent RNAs attached to an actively transcribing RNA polymerase complex can identify unstable RNAs, including those templated from gene-distal enhancers (eRNAs). However, nascent RNA sequencing techniques remain challenging to apply in some cell lines and especially to intact tissues, limiting broad applications in fields such as cancer genomics and personalized medicine. Here we report the development of chromatin run-on and sequencing (ChRO-seq), a novel run-on technology that maps the location of RNA polymerase using virtually any frozen tissue sample, including samples with degraded RNA that are intractable to conventional RNA-seq. We used ChRO-seq to develop the first maps of nascent transcription in 23 human glioblastoma (GBM) brain tumors and patient derived xenografts. Remarkably, >90,000 distal enhancers discovered using the signature of eRNA biogenesis within primary GBMs closely resemble those found in the normal human brain, and diverge substantially from GBM cell models. Despite extensive overall similarity, 12% of enhancers in each GBM distinguish normal and malignant brain tissue. These enhancers drive regulatory programs similar to the developing nervous system and are enriched for transcription factor binding sites that specify a stem-like cell fate. These results demonstrate that GBMs largely retain the enhancer landscape associated with their tissue of origin, but selectively adopt regulatory programs that are responsible for driving stem-like cell properties.The human genome encodes a variety of poorly understood RNA species that remain challenging to identify using existing genomic tools. We developed chromatin run-on and sequencing (ChRO-seq) to map the location of RNA polymerase using virtually any input sample, including samples with degraded RNA that are intractable to conventional RNA-seq. We used ChRO-seq to develop the first maps of nascent transcription in primary human glioblastoma (GBM) brain tumors. Whereas enhancers discovered in primary GBMs resemble open chromatin in the normal human brain, rare enhancers activated in malignant tissue drive regulatory programs similar to the developing nervous system. We identified enhancers that regulate genes characteristic of each known GBM subtype, identified transcription factors that drive them, and discovered a core group of transcription factors that control the expression of genes associated with clinical outcomes. This study uncovers new insights into the molecular etiology of GBM and introduces ChRO-seq which can now be used to map regulatory programs contributing to a variety of complex diseases.
bioRxiv | 2018
Katla Kristjándsóttir; Yeonui Kwak; Nathaniel D. Tippens; John T. Lis; Hyun Min Kang; Hojoong Kwak
Enhancer RNAs (eRNA) are non-coding RNAs transcribed bidirectionally from active regulatory sequences. Their expression levels correlate with the activating potentials of the enhancers, but due to their instability, eRNAs have proven difficult to quantify in large scale. To overcome this, we use capped-nascent-RNA sequencing to efficiently capture the bidirectional initiation of eRNAs. We apply this in large scale to the human lymphoblastoid cell lines from the Yoruban population, and detected nearly 75,000 eRNA transcription sites with high sensitivity and specificity. We identify genetic variants significantly associated with overall eRNA initiation levels, as well as the transcription directionality between the two divergent eRNA pairs, namely the transcription initiation and directional initiation quantitative trait loci (tiQTLs and diQTLs) respectively. High-resolution analyses of these two types of eRNA QTLs reveal distinct positions of enrichment not only at the central transcription factor (TF) binding regions but also at the flanking eRNA initiation regions, both of which are equivalently associated with mRNA expression QTLs. These two regions - the central TF binding footprint and the eRNA initiation cores - define the bipartite architecture and the function of enhancers, and may provide further insights into interpreting the significance of non-coding regulatory variants.