Holger B. Kramer
University of Oxford
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Holger B. Kramer.
Science | 2009
Celia J. Webby; Alexander Wolf; Natalia Gromak; Mathias Dreger; Holger B. Kramer; Benedikt M. Kessler; Michael L. Nielsen; Corinna Schmitz; Danica Butler; John R. Yates; Claire Delahunty; Phillip Hahn; Andreas Lengeling; Matthias Mann; Nick J. Proudfoot; Christopher J. Schofield; Angelika Böttger
Modifying the Modifier Covalent modification of proteins provides an important means whereby their function is regulated. Hydroxylation, catalyzed by oxygenase enzymes, plays an important role in the response to hypoxia, for example. The human protein Jmjd6 has been thought to act as an oxygenase, catalyzing the demethylation of histone H3 at arginine-2 and histone H4 at arginine-3. Webby et al. (p. 90) now show that Jmjd6 interacts with the messenger RNA splicing factor U2AF65 and acts to hydroxylate this protein at lysine residues, modifications also seen in vivo. Furthermore, Jmjd6 modulates the alternative splicing of both an endogenous gene and an introduced mini-gene. An oxygenase with an important role in vertebrate development hydroxylates a messenger RNA splicing factor. The finding that the metazoan hypoxic response is regulated by oxygen-dependent posttranslational hydroxylations, which regulate the activity and lifetime of hypoxia-inducible factor (HIF), has raised the question of whether other hydroxylases are involved in the regulation of gene expression. We reveal that the splicing factor U2 small nuclear ribonucleoprotein auxiliary factor 65-kilodalton subunit (U2AF65) undergoes posttranslational lysyl-5-hydroxylation catalyzed by the Fe(II) and 2-oxoglutarate–dependent dioxygenase Jumonji domain-6 protein (Jmjd6). Jmjd6 is a nuclear protein that has an important role in vertebrate development and is a human homolog of the HIF asparaginyl-hydroxylase. Jmjd6 is shown to change alternative RNA splicing of some, but not all, of the endogenous and reporter genes, supporting a specific role for Jmjd6 in the regulation of RNA splicing.
Nature | 2007
S I van Kasteren; Holger B. Kramer; H H Jensen; S J Campbell; J Kirkpatrick; Neil J. Oldham; Daniel C. Anthony; Benjamin G. Davis
One of the most important current scientific paradoxes is the economy with which nature uses genes. In all higher animals studied, we have found many fewer genes than we would have previously expected. The functional outputs of the eventual products of genes seem to be far more complex than the more restricted blueprint. In higher organisms, the functions of many proteins are modulated by post-translational modifications (PTMs). These alterations of amino-acid side chains lead to higher structural and functional protein diversity and are, therefore, a leading contender for an explanation for this seeming incongruity. Natural protein production methods typically produce PTM mixtures within which function is difficult to dissect or control. Until now it has not been possible to access pure mimics of complex PTMs. Here we report a chemical tagging approach that enables the attachment of multiple modifications to bacterially expressed (bare) protein scaffolds: this approach allows reconstitution of functionally effective mimics of higher organism PTMs. By attaching appropriate modifications at suitable distances in the widely-used LacZ reporter enzyme scaffold, we created protein probes that included sensitive systems for detection of mammalian brain inflammation and disease. Through target synthesis of the desired modification, chemistry provides a structural precision and an ability to retool with a chosen PTM in a manner not available to other approaches. In this way, combining chemical control of PTM with readily available protein scaffolds provides a systematic platform for creating probes of protein–PTM interactions. We therefore anticipate that this ability to build model systems will allow some of this gene product complexity to be dissected, with the aim of eventually being able to completely duplicate the patterns of a particular protein’s PTMs from an in vivo assay into an in vitro system.
Biochemical Journal | 2009
Mariola J. Edelmann; Alexander Iphöfer; Masato Akutsu; Mikael Altun; Katalin Di Gleria; Holger B. Kramer; Edda Fiebiger; Sirano Dhe-Paganon; Benedikt M. Kessler
OTUB (otubain) 1 is a human deubiquitinating enzyme that is implicated in mediating lymphocyte antigen responsiveness, but whose molecular function is generally not well defined. A structural analysis of OTUB1 shows differences in accessibility to the active site and in surface properties of the substrate-binding regions when compared with its close homologue, OTUB2, suggesting variations in regulatory mechanisms and substrate specificity. Biochemical analysis reveals that OTUB1 has a preference for cleaving Lys(48)-linked polyubiquitin chains over Lys(63)-linked polyubiquitin chains, and it is capable of cleaving NEDD8 (neural-precursor-cell-expressed developmentally down-regulated 8), but not SUMO (small ubiquitin-related modifier) 1/2/3 and ISG15 (interferon-stimulated gene 15) conjugates. A functional comparison of OTUB1 and OTUB2 indicated a differential reactivity towards ubiquitin-based active-site probes carrying a vinyl methyl ester, a 2-chloroethyl or a 2-bromoethyl group at the C-terminus. Mutational analysis suggested that a narrow P1 site, as observed in OTUB1, correlates with its ability to preferentially cleave Lys(48)-linked ubiquitin chains. Analysis of cellular interaction partners of OTUB1 by co-immunoprecipitation and MS/MS (tandem mass spectrometry) experiments demonstrated that FUS [fusion involved in t(12;6) in malignant liposarcoma; also known as TLS (translocation in liposarcoma) or CHOP (CCAAT/enhancer-binding protein homologous protein)] and RACK1 [receptor for activated kinase 1; also known as GNB2L1 (guanine-nucleotide-binding protein beta polypeptide 2-like 1)] are part of OTUB1-containing complexes, pointing towards a molecular function of this deubiquitinating enzyme in RNA processing and cell adhesion/morphology.
Journal of Biological Chemistry | 2011
Ya-Min Tian; Kar Kheng Yeoh; Myung Kyu Lee; Tuula Eriksson; Benedikt M. Kessler; Holger B. Kramer; Mariola J. Edelmann; Carsten Willam; Christopher W. Pugh; Christopher J. Schofield; Peter J. Ratcliffe
Hypoxia inducible factor (HIF) is regulated by dual pathways involving oxygen-dependent prolyl and asparaginyl hydroxylation of its α-subunits. Prolyl hydroxylation at two sites within a central degradation domain promotes association of HIF-α with the von Hippel-Lindau ubiquitin E3 ligase and destruction by the ubiquitin-proteasome pathways. Asparaginyl hydroxylation blocks the recruitment of p300/CBP co-activators to a C-terminal activation domain in HIF-α. These hydroxylations are catalyzed by members of the Fe(II) and 2-oxoglutarate (2-OG) oxygenase family. Activity of the enzymes is suppressed by hypoxia, increasing both the abundance and activity of the HIF transcriptional complex. We have used hydroxy residue-specific antibodies to compare and contrast the regulation of each site of prolyl hydroxylation (Pro402, Pro564) with that of asparaginyl hydroxylation (Asn803) in human HIF-1α. Our findings reveal striking differences in the sensitivity of these hydroxylations to hypoxia and to different inhibitor types of 2-OG oxygenases. Hydroxylation at the three sites in endogenous human HIF-1α proteins was suppressed by hypoxia in the order Pro402 > Pro564 > Asn803. In contrast to some predictions from in vitro studies, prolyl hydroxylation was substantially more sensitive than asparaginyl hydroxylation to inhibition by iron chelators and transition metal ions; studies of a range of different small molecule 2-OG analogues demonstrated the feasibility of selectively inhibiting either prolyl or asparaginyl hydroxylation within cells.
Journal of Proteome Research | 2010
Mukram Mohamed Mackeen; Holger B. Kramer; Kai Hsuan Chang; Matthew L. Coleman; Richard J. Hopkinson; Christopher J. Schofield; Benedikt M. Kessler
Post-translational modifications on histones are an important mechanism for the regulation of gene expression and are involved in all aspects of cell growth and differentiation, as well as pathological processes including neurodegeneration, autoimmunity, and cancer. A major challenge within the chromatin field is to develop methods for the quantitative analysis of histone modifications. Here we report a mass spectrometry (MS) approach based on ultraperformance liquid chromatography high/low collision switching (UPLC-MS(E)) to monitor histone modifications in cells. This approach is exemplified by the analysis of trimethylated lysine-9 levels in histone H3, following a simple chemical derivatization procedure with d(6)-acetic anhydride. This method was used to study the inhibition of histone demethylases with pyridine-2,4-dicarboxylic acid (PDCA) derivatives in cells. Our results show that the PDCA-dimethyl ester inhibits JMJD2A catalyzed demethylation of lysine-9 on histone H3 in human HEK 293T cells. Demethylase inhibition, as observed by MS analyses, was supported by immunoblotting with modification-specific antibodies. The results demonstrate that PDCA derived small molecules are cell permeable demethylase inhibitors and reveal that quantitative MS is a useful tool for measuring post-translational histone modifications in cells.
Chemistry & Biology | 2013
Joanna F. McGouran; Selina R. Gaertner; Mikael Altun; Holger B. Kramer; Benedikt M. Kessler
Summary Posttranslational modification with ubiquitin (Ub) controls many cellular processes, and aberrant ubiquitination can contribute to cancer, immunopathology, and neurodegeneration. The versatility arises from the ability of Ub to form polymer chains with eight distinct linkages via lysine side chains and the N terminus. In this study, we engineered Di-Ub probes mimicking all eight different poly-Ub linkages and profiled the deubiquitinating enzyme (DUB) selectivity for recognizing Di-Ub moieties in cellular extracts. Mass spectrometric profiling revealed that most DUBs examined have broad selectivity, whereas a subset displays a clear preference for recognizing noncanonical over K48/K63 Ub linkages. Our results expand knowledge of Ub processing enzyme functions in cellular contexts that currently depends largely on using recombinant enzymes and substrates.
Journal of Molecular Biology | 2011
Rasheduzzaman Chowdhury; Emily Flashman; Jasmin Mecinović; Holger B. Kramer; Benedikt M. Kessler; Yves Frapart; Jean-Luc Boucher; Ian J. Clifton; Michael A. McDonough; Christopher J. Schofield
The hypoxic response in animals is mediated via the transcription factor hypoxia-inducible factor (HIF). An oxygen-sensing component of the HIF system is provided by Fe(II) and 2-oxoglutarate-dependent oxygenases that catalyse the posttranslational hydroxylation of the HIF-α subunit. It is proposed that the activity of the HIF hydroxylases can be regulated by their reaction with nitric oxide. We describe biochemical and biophysical studies on the reaction of prolyl hydroxylase domain-containing enzyme (PHD) isoform 2 (EGLN1) with nitric oxide and a nitric oxide transfer reagent. The combined results reveal the potential for the catalytic domain of PHD2 to react with nitric oxide both at its Fe(II) and at cysteine residues. Although the biological significance is unclear, the results suggest that the reaction of PHD2 with nitric oxide has the potential to be complex and are consistent with proposals based on cellular studies that nitric oxide may regulate the hypoxic response by direct reaction with the HIF hydroxylases.
Journal of Biological Chemistry | 2011
Ming Yang; Wei Ge; Rasheduzzaman Chowdhury; Timothy D. W. Claridge; Holger B. Kramer; Bernhard Schmierer; Michael A. McDonough; Lingzhi Gong; Benedikt M. Kessler; Peter J. Ratcliffe; Mathew L. Coleman; Christopher J. Schofield
Factor-inhibiting hypoxia-inducible factor (FIH) catalyzes the β-hydroxylation of an asparagine residue in the C-terminal transcriptional activation domain of the hypoxia inducible factor (HIF), a modification that negatively regulates HIF transcriptional activity. FIH also catalyzes the hydroxylation of highly conserved Asn residues within the ubiquitous ankyrin repeat domain (ARD)-containing proteins. Hydroxylation has been shown to stabilize localized regions of the ARD fold in the case of a three-repeat consensus ankyrin protein, but this phenomenon has not been demonstrated for the extensive naturally occurring ARDs. Here we report that the cytoskeletal ankyrin family are substrates for FIH-catalyzed hydroxylations. We show that the ARD of ankyrinR is multiply hydroxylated by FIH both in vitro and in endogenous proteins purified from human and mouse erythrocytes. Hydroxylation of the D34 region of ankyrinR ARD (ankyrin repeats 13–24) increases its conformational stability and leads to a reduction in its interaction with the cytoplasmic domain of band 3 (CDB3), demonstrating the potential for FIH-catalyzed hydroxylation to modulate protein-protein interactions. Unexpectedly we found that aspartate residues in ankyrinR and ankyrinB are hydroxylated and that FIH-catalyzed aspartate hydroxylation also occurs in other naturally occurring AR sequences. The crystal structure of an FIH variant in complex with an Asp-substrate peptide together with NMR analyses of the hydroxylation product identifies the 3S regio- and stereoselectivity of the FIH-catalyzed Asp hydroxylation, revealing a previously unprecedented posttranslational modification.
Journal of Clinical Investigation | 2012
Davor Frleta; Carolyn E. Ochoa; Holger B. Kramer; Shaukat Khan; Andrea R. Stacey; Persephone Borrow; Benedikt M. Kessler; Barton F. Haynes; Nina Bhardwaj
Acute HIV-1 infection results in dysregulated immunity, which contributes to poor control of viral infection. DCs are key regulators of both adaptive and innate immune responses needed for controlling HIV-1, and we surmised that factors elicited during acute HIV-1 infection might impede DC function. We derived immature DCs from healthy donor peripheral blood monocytes and treated them with plasma from uninfected control donors and donors with acute HIV-1 infections. We found that the plasma from patients with HIV specifically inhibited DC function. This suppression was mediated by elevated apoptotic microparticles derived from dying cells during acute HIV-1 infection. Apoptotic microparticles bound to and inhibited DCs through the hyaluronate receptor CD44. These data suggest that targeting this CD44-mediated inhibition by apoptotic microparticles could be a novel strategy to potentiate DC activation of HIV-specific immunity.
Organic and Biomolecular Chemistry | 2012
Joanna F. McGouran; Holger B. Kramer; Mukram Mohamed Mackeen; Katalin Di Gleria; Mikael Altun; Benedikt M. Kessler
Novel ubiquitin-based active site probes including a fluorescent tag have been developed and evaluated. A new, functionalizable electrophilic trap is utilized allowing for late stage diversification of the probe. Attachment of fluorescent dyes allowed direct detection of endogenous deubiquitinating enzyme (DUB) activities in cell extracts by in-gel fluorescence imaging.