Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Holger Bierhoff is active.

Publication


Featured researches published by Holger Bierhoff.


Nature Cell Biology | 2005

c-Myc associates with ribosomal DNA and activates RNA polymerase I transcription

Azadeh Arabi; Siqin Wu; Karin Ridderstråle; Holger Bierhoff; Chiou-Nan Shiue; Karoly Fatyol; Sara Fahlén; Per Hydbring; Ola Söderberg; Ingrid Grummt; Lars-Gunnar Larsson; Anthony P. H. Wright

The c-Myc oncoprotein regulates transcription of genes that are associated with cell growth, proliferation and apoptosis. c-Myc levels are modulated by ubiquitin/proteasome-mediated degradation. Proteasome inhibition leads to c-Myc accumulation within nucleoli, indicating that c-Myc might have a nucleolar function. Here we show that the proteins c-Myc and Max interact in nucleoli and are associated with ribosomal DNA. This association is increased upon activation of quiescent cells and is followed by recruitment of the Myc cofactor TRRAP, enhanced histone acetylation, recruitment of RNA polymerase I (Pol I), and activation of rDNA transcription. Using small interfering RNAs (siRNAs) against c-Myc and an inhibitor of Myc–Max interactions, we demonstrate that c-Myc is required for activating rDNA transcription in response to mitogenic signals. Furthermore, using the ligand-activated MycER (ER, oestrogen receptor) system, we show that c-Myc can activate Pol I transcription in the absence of Pol II transcription. These results suggest that c-Myc coordinates the activity of all three nuclear RNA polymerases, and thereby plays a key role in regulating ribosome biogenesis and cell growth.


Proceedings of the National Academy of Sciences of the United States of America | 2009

AMP-activated protein kinase adapts rRNA synthesis to cellular energy supply

Sven Hoppe; Holger Bierhoff; Ivana Cado; Andrea Weber; Marcel Tiebe; Ingrid Grummt; Renate Voit

AMP-activated protein kinase (AMPK) senses changes in the intracellular AMP/ATP ratio, switching off energy-consuming processes and switching on catabolic pathways in response to energy depletion. Here, we show that AMPK down-regulates rRNA synthesis under glucose restriction by phosphorylating the RNA polymerase I (Pol I)-associated transcription factor TIF-IA at a single serine residue (Ser-635). Phosphorylation by AMPK impairs the interaction of TIF-IA with the TBP-containing promoter selectivity factor SL1, thereby precluding the assembly of functional transcription initiation complexes. Mutation of Ser-635 compromises down-regulation of Pol I transcription in response to low energy supply, supporting that activation of AMPK adapts rRNA synthesis to nutrient availability and the cellular energy status.


Journal of Bacteriology | 2003

Yeast two-hybrid studies on interaction of proteins involved in regulation of nitrogen fixation in the phototrophic bacterium Rhodobacter capsulatus.

Alice Pawlowski; Kai-Uwe Riedel; Werner Klipp; Petra Dreiskemper; Silke Gross; Holger Bierhoff; Thomas Drepper; Bernd Masepohl

Rhodobacter capsulatus contains two PII-like proteins, GlnB and GlnK, which play central roles in controlling the synthesis and activity of nitrogenase in response to ammonium availability. Here we used the yeast two-hybrid system to probe interactions between these PII-like proteins and proteins known to be involved in regulating nitrogen fixation. Analysis of defined protein pairs demonstrated the following interactions: GlnB-NtrB, GlnB-NifA1, GlnB-NifA2, GlnB-DraT, GlnK-NifA1, GlnK-NifA2, and GlnK-DraT. These results corroborate earlier genetic data and in addition show that PII-dependent ammonium regulation of nitrogen fixation in R. capsulatus does not require additional proteins, like NifL in Klebsiella pneumoniae. In addition, we found interactions for the protein pairs GlnB-GlnB, GlnB-GlnK, NifA1-NifA1, NifA2-NifA2, and NifA1-NifA2, suggesting that fine tuning of the nitrogen fixation process in R. capsulatus may involve the formation of GlnB-GlnK heterotrimers as well as NifA1-NifA2 heterodimers. In order to identify new proteins that interact with GlnB and GlnK, we constructed an R. capsulatus genomic library for use in yeast two-hybrid studies. Screening of this library identified the ATP-dependent helicase PcrA as a new putative protein that interacts with GlnB and the Ras-like protein Era as a new protein that interacts with GlnK.


Molecular Cell | 2014

Quiescence-Induced LncRNAs Trigger H4K20 Trimethylation and Transcriptional Silencing

Holger Bierhoff; Marcel Andre Dammert; David Brocks; Silvia Dambacher; Gunnar Schotta; Ingrid Grummt

A complex network of regulatory pathways links transcription to cell growth and proliferation. Here we show that cellular quiescence alters chromatin structure by promoting trimethylation of histone H4 at lysine 20 (H4K20me3). In contrast to pericentric or telomeric regions, recruitment of the H4K20 methyltransferase Suv4-20h2 to rRNA genes and IAP elements requires neither trimethylation of H3K9 nor interaction with HP1 proteins but depends on long noncoding RNAs (lncRNAs) that interact with Suv4-20h2. Growth factor deprivation and terminal differentiation lead to upregulation of these lncRNAs, increase in H4K20me3, and chromatin compaction. The results uncover a lncRNA-mediated mechanism that guides Suv4-20h2 to specific genomic loci to establish a more compact chromatin structure in growth-arrested cells.


Molecular and Cellular Biology | 2008

Phosphorylation by Casein Kinase 2 Facilitates rRNA Gene Transcription by Promoting Dissociation of TIF-IA from Elongating RNA Polymerase I

Holger Bierhoff; Miroslav Dundr; Annemieke A. Michels; Ingrid Grummt

ABSTRACT The protein kinase casein kinase 2 (CK2) phosphorylates different components of the RNA polymerase I (Pol I) transcription machinery and exerts a positive effect on rRNA gene (rDNA) transcription. Here we show that CK2 phosphorylates the transcription initiation factor TIF-IA at serines 170 and 172 (Ser170/172), and this phosphorylation triggers the release of TIF-IA from Pol I after transcription initiation. Inhibition of Ser170/172 phosphorylation or covalent tethering of TIF-IA to the RPA43 subunit of Pol I inhibits rDNA transcription, leading to perturbation of nucleolar structure and cell cycle arrest. Fluorescence recovery after photobleaching and chromatin immunoprecipitation experiments demonstrate that dissociation of TIF-IA from Pol I is a prerequisite for proper transcription elongation. In support of phosphorylation of TIF-IA switching from the initiation into the elongation phase, dephosphorylation of Ser170/172 by FCP1 facilitates the reassociation of TIF-IA with Pol I, allowing a new round of rDNA transcription. The results reveal a mechanism by which the functional interplay between CK2 and FCP1 sustains multiple rounds of Pol I transcription.


Cold Spring Harbor Symposia on Quantitative Biology | 2010

Noncoding Transcripts in Sense and Antisense Orientation Regulate the Epigenetic State of Ribosomal RNA Genes

Holger Bierhoff; K. Schmitz; F. Maass; J. Ye; Ingrid Grummt

Alternative transcription of the same gene in sense and antisense orientation regulates expression of protein-coding genes. Here we show that noncoding RNA (ncRNA) in sense and antisense orientation also controls transcription of rRNA genes (rDNA). rDNA exists in two types of chromatin--a euchromatic conformation that is permissive to transcription and a heterochromatic conformation that is transcriptionally silent. Silencing of rDNA is mediated by NoRC, a chromatin-remodeling complex that triggers heterochromatin formation. NoRC function requires RNA that is complementary to the rDNA promoter (pRNA). pRNA forms a DNA:RNA triplex with a regulatory element in the rDNA promoter, and this triplex structure is recognized by DNMT3b. The results imply that triplex-mediated targeting of DNMT3b to specific sequences may be a common pathway in epigenetic regulation. We also show that rDNA is transcribed in antisense orientation. The level of antisense RNA (asRNA) is down-regulated in cancer cells and up-regulated in senescent cells. Ectopic asRNA triggers trimethylation of histone H4 at lysine 20 (H4K20me3), suggesting that antisense transcripts guide the histone methyltransferase Suv4-20 to rDNA. The results reveal that noncoding RNAs in sense and antisense orientation are important determinants of the epigenetic state of rDNA.


Epigenetics | 2014

Noisy silence: non-coding RNA and heterochromatin formation at repetitive elements.

Holger Bierhoff; Anna Postepska-Igielska; Ingrid Grummt

A significant fraction of eukaryotic genomes comprises repetitive sequences, including rRNA genes, centromeres, telomeres, and retrotransposons. Repetitive elements are hotspots for recombination and represent a serious challenge for genome integrity. Maintaining these repeated elements in a compact heterochromatic structure suppresses recombination and unwanted mutagenic transposition, and is therefore indispensable for genomic stability. Paradoxically, repetitive elements are not transcriptionally inert, but produce RNA that has important functions in regulating and reinforcing the heterochromatic state. Here, we review the role of non-coding RNA (ncRNA) in recruiting chromatin-modifying enzymes to repetitive genomic loci to establish a repressive chromatin structure that safeguards chromosome integrity and genome stability.


Nature Genetics | 2017

DNMT and HDAC inhibitors induce cryptic transcription start sites encoded in long terminal repeats

David Brocks; Christopher R. Schmidt; Michael Daskalakis; Hyo Sik Jang; Nakul M. Shah; Daofeng Li; Jing Li; Bo Zhang; Yiran Hou; Sara Laudato; Daniel B. Lipka; Johanna Schott; Holger Bierhoff; Yassen Assenov; Monika Helf; Alzbeta Ressnerova; Saiful Islam; Anders M. Lindroth; Simon Haas; Marieke Essers; Charles D. Imbusch; Benedikt Brors; Ina Oehme; Olaf Witt; Michael Lübbert; Jan-Philipp Mallm; Karsten Rippe; Rainer Will; Dieter Weichenhan; Georg Stoecklin

Several mechanisms of action have been proposed for DNA methyltransferase and histone deacetylase inhibitors (DNMTi and HDACi), primarily based on candidate-gene approaches. However, less is known about their genome-wide transcriptional and epigenomic consequences. By mapping global transcription start site (TSS) and chromatin dynamics, we observed the cryptic transcription of thousands of treatment-induced non-annotated TSSs (TINATs) following DNMTi and HDACi treatment. The resulting transcripts frequently splice into protein-coding exons and encode truncated or chimeric ORFs translated into products with predicted abnormal or immunogenic functions. TINAT transcription after DNMTi treatment coincided with DNA hypomethylation and gain of classical promoter histone marks, while HDACi specifically induced a subset of TINATs in association with H2AK9ac, H3K14ac, and H3K23ac. Despite this mechanistic difference, both inhibitors convergently induced transcription from identical sites, as we found TINATs to be encoded in solitary long terminal repeats of the ERV9/LTR12 family, which are epigenetically repressed in virtually all normal cells.


Frontiers in Cellular Neuroscience | 2013

Impaired rRNA synthesis triggers homeostatic responses in hippocampal neurons

Anna Kiryk; Katharina Sowodniok; Grzegorz Kreiner; Jan Rodriguez-Parkitna; Aynur Sönmez; Tomasz Gorkiewicz; Holger Bierhoff; Marcin Wawrzyniak; Artur K. Janusz; Birgit Liss; Witold Konopka; Günther Schütz; Leszek Kaczmarek; Rosanna Parlato

Decreased rRNA synthesis and nucleolar disruption, known as nucleolar stress, are primary signs of cellular stress associated with aging and neurodegenerative disorders. Silencing of rDNA occurs during early stages of Alzheimers disease (AD) and may play a role in dementia. Moreover, aberrant regulation of the protein synthesis machinery is present in the brain of suicide victims and implicates the epigenetic modulation of rRNA. Recently, we developed unique mouse models characterized by nucleolar stress in neurons. We inhibited RNA polymerase I by genetic ablation of the basal transcription factor TIF-IA in adult hippocampal neurons. Nucleolar stress resulted in progressive neurodegeneration, although with a differential vulnerability within the CA1, CA3, and dentate gyrus (DG). Here, we investigate the consequences of nucleolar stress on learning and memory. The mutant mice show normal performance in the Morris water maze and in other behavioral tests, suggesting the activation of adaptive mechanisms. In fact, we observe a significantly enhanced learning and re-learning corresponding to the initial inhibition of rRNA transcription. This phenomenon is accompanied by aberrant synaptic plasticity. By the analysis of nucleolar function and integrity, we find that the synthesis of rRNA is later restored. Gene expression profiling shows that 36 transcripts are differentially expressed in comparison to the control group in absence of neurodegeneration. Additionally, we observe a significant enrichment of the putative serum response factor (SRF) binding sites in the promoters of the genes with changed expression, indicating potential adaptive mechanisms mediated by the mitogen-activated protein kinase pathway. In the DG a neurogenetic response might compensate the initial molecular deficits. These results underscore the role of nucleolar stress in neuronal homeostasis and open a new ground for therapeutic strategies aiming at preserving neuronal function.


Nucleic Acids Research | 2016

Heat shock represses rRNA synthesis by inactivation of TIF-IA and lncRNA-dependent changes in nucleosome positioning

Zhongliang Zhao; Marcel Andre Dammert; Sven Hoppe; Holger Bierhoff; Ingrid Grummt

Attenuation of ribosome biogenesis in suboptimal growth environments is crucial for cellular homeostasis and genetic integrity. Here, we show that shutdown of rRNA synthesis in response to elevated temperature is brought about by mechanisms that target both the RNA polymerase I (Pol I) transcription machinery and the epigenetic signature of the rDNA promoter. Upon heat shock, the basal transcription factor TIF-IA is inactivated by inhibition of CK2-dependent phosphorylations at Ser170/172. Attenuation of pre-rRNA synthesis in response to heat stress is accompanied by upregulation of PAPAS, a long non-coding RNA (lncRNA) that is transcribed in antisense orientation to pre-rRNA. PAPAS interacts with CHD4, the adenosine triphosphatase subunit of NuRD, leading to deacetylation of histones and movement of the promoter-bound nucleosome into a position that is refractory to transcription initiation. The results exemplify how stress-induced inactivation of TIF-IA and lncRNA-dependent changes of chromatin structure ensure repression of rRNA synthesis in response to thermo-stress.

Collaboration


Dive into the Holger Bierhoff's collaboration.

Top Co-Authors

Avatar

Ingrid Grummt

German Cancer Research Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

David Brocks

German Cancer Research Center

View shared research outputs
Top Co-Authors

Avatar

Marcel Andre Dammert

German Cancer Research Center

View shared research outputs
Top Co-Authors

Avatar

Zhongliang Zhao

German Cancer Research Center

View shared research outputs
Top Co-Authors

Avatar

Alzbeta Ressnerova

German Cancer Research Center

View shared research outputs
Top Co-Authors

Avatar

Anders M. Lindroth

German Cancer Research Center

View shared research outputs
Top Co-Authors

Avatar

Benedikt Brors

German Cancer Research Center

View shared research outputs
Top Co-Authors

Avatar

Charles D. Imbusch

German Cancer Research Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge