Holger Egger
Bayer
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Holger Egger.
Langmuir | 2011
Björn Goldenbogen; Nicolai Brodersen; Andrea Gramatica; Martin Loew; Jürgen Liebscher; Andreas Herrmann; Holger Egger; Bastian Budde; Anna Arbuzova
The development of targeted and triggerable delivery systems is of high relevance for anticancer therapies. We report here on reduction-sensitive liposomes composed of a novel multifunctional lipidlike conjugate, containing a disulfide bond and a biotin moiety, and natural phospholipids. The incorporation of the disulfide conjugate into vesicles and the kinetics of their reduction were studied using dansyl-labeled conjugate 1 in using the dansyl fluorescence environmental sensitivity and the Förster resonance energy transfer from dansyl to rhodamine-labeled phospholipids. Cleavage of the disulfide bridge (e.g., by tris(2-carboxyethyl)phosphine (TCEP), dithiothreitol (DTT), l-cysteine, or glutathione (GSH)) removed the hydrophilic headgroup of the conjugate and thus changed the membrane organization leading to the release of entrapped molecules. Upon nonspecific uptake of vesicles by macrophages, calcein release from reduction-sensitive liposomes consisting of the disulfide conjugate and phospholipids was more efficient than from reduction-insensitive liposomes composed only of phospholipids. The binding of streptavidin to the conjugates did not interfere with either the subsequent reduction of the disulfide bond of the conjugate or the release of entrapped molecules. Breast cancer cell line BT-474, overexpressing the HER2 receptor, showed a high uptake of the reduction-sensitive doxorubicin-loaded liposomes functionalized with the biotin-tagged anti-HER2 antibody. The release of the entrapped cargo inside the cells was observed, implying the potential of using our system for active targeting and delivery.
Biomedical spectroscopy and imaging | 2011
Fabian Dortu; Holger Egger; Kai Kolari; T. Haatainen; P. Fürjes; Z. Fekete; Damien Bernier; Graham J. Sharp; Basudev Lahiri; Sándor Kurunczi; J.-C. Sanchez; N. Turck; P. Petrik; D. Patko; Robert Horvath; S. Eiden; Timo Aalto; S. Watts; Nigel P. Johnson; R.M. De La Rue; Domenico Giannone
In this work, we report advances in the fabrication and anticipated performance of a polymer biosensor photonic chip developed in the European Union project P3SENS (FP7-ICT4-248304). Due to the low cost requirements of point-ofcare applications, the photonic chip is fabricated from nanocomposite polymeric materials, using highly scalable nanoimprint- lithography (NIL). A suitable microfluidic structure transporting the analyte solutions to the sensor area is also fabricated in polymer and adequately bonded to the photonic chip. We first discuss the design and the simulated performance of a high-Q resonant cavity photonic crystal sensor made of a high refractive index polyimide core waveguide on a low index polymer cladding. We then report the advances in doped and undoped polymer thin film processing and characterization for fabricating the photonic sensor chip. Finally the development of the microfluidic chip is presented in details, including the characterisation of the fluidic behaviour, the technological and material aspects of the 3D polymer structuring and the stable adhesion strategies for bonding the fluidic and the photonic chips, with regards to the constraints imposed by the bioreceptors supposedly already present on the sensors.
Proceedings of SPIE | 2012
Domenico Giannone; Fabian Dortu; Damien Bernier; Nigel P. Johnson; Graham J. Sharp; Lianping Hou; Ali Z. Khokhar; P. Fürjes; Sándor Kurunczi; P. Petrik; Robert Horvath; Timo Aalto; Kai Kolari; Sami Ylinen; Tomi Haatainen; Holger Egger
We present the most recent results of EU funded project P3SENS (FP7-ICT-2009.3.8) aimed at the development of a low-cost and medium sensitivity polymer based photonic biosensor for point of care applications in proteomics. The fabrication of the polymer photonic chip (biosensor) using thermal nanoimprint lithography (NIL) is described. This technique offers the potential for very large production at reduced cost. However several technical challenges arise due to the properties of the used materials. We believe that, once the NIL technique has been optimised to the specific materials, it could be even transferred to a kind of roll-to-roll production for manufacturing a very large number of photonic devices at reduced cost.
Chemie Ingenieur Technik | 2012
Beate Hack; Holger Egger; Jens Uhlemann; Michel Henriet; Wolfgang Wirth; Arnoldus W.P. Vermeer; Daniel Gordon Duff
Archive | 2010
Holger Egger; Axel Eble; Juergen Liebscher; Andreas Herrmann; Martin Loew; Anna Arbuzova; Nicolai Brodersen
MRS Proceedings | 2011
P. Petrik; Holger Egger; S. Eiden; E. Agocs; M. Fried; B. Pecz; K. Kolari; T. Aalto; R. Horvath; D. Giannone
Archive | 2010
Holger Egger; Dirk Storch
Archive | 2009
Iwer Baecker; Miranda Rothenburger Glaubitt; Joern Probst; Holger Egger
Archive | 2009
Holger Egger; Dirk Storch
Archive | 2008
Stefanie I. Eiden; Axel Eble; Martin Weiss; Daniel Gordon Duff; Olaf Bork; Holger Egger; Bastian Budde; Sascha Plug