Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Holger Erfle is active.

Publication


Featured researches published by Holger Erfle.


Nature | 2010

Phenotypic profiling of the human genome by time-lapse microscopy reveals cell division genes.

Beate Neumann; Thomas Walter; Jean-Karim Hériché; Jutta Bulkescher; Holger Erfle; Christian Conrad; Phill Rogers; Ina Poser; Michael Held; Urban Liebel; Cihan Cetin; Frank Sieckmann; Gregoire Pau; Rolf Kabbe; Annelie Wünsche; Venkata P. Satagopam; Michael H.A. Schmitz; Catherine Chapuis; Daniel W. Gerlich; Reinhard Schneider; Roland Eils; Wolfgang Huber; Jan-Michael Peters; Anthony A. Hyman; Richard Durbin; Rainer Pepperkok; Jan Ellenberg

Despite our rapidly growing knowledge about the human genome, we do not know all of the genes required for some of the most basic functions of life. To start to fill this gap we developed a high-throughput phenotypic screening platform combining potent gene silencing by RNA interference, time-lapse microscopy and computational image processing. We carried out a genome-wide phenotypic profiling of each of the ∼21,000 human protein-coding genes by two-day live imaging of fluorescently labelled chromosomes. Phenotypes were scored quantitatively by computational image processing, which allowed us to identify hundreds of human genes involved in diverse biological functions including cell division, migration and survival. As part of the Mitocheck consortium, this study provides an in-depth analysis of cell division phenotypes and makes the entire high-content data set available as a resource to the community.


Cell Host & Microbe | 2011

Recruitment and activation of a lipid kinase by hepatitis C virus NS5A is essential for integrity of the membranous replication compartment

Simon Reiss; Ilka Rebhan; Perdita Backes; Inés Romero-Brey; Holger Erfle; Petr Matula; Lars Kaderali; Marion Poenisch; Hagen Blankenburg; Marie Sophie Hiet; T Longerich; Sarah Diehl; Fidel Ramírez; Tamas Balla; Karl Rohr; Artur Kaul; Sandra Bühler; Rainer Pepperkok; Thomas Lengauer; Mario Albrecht; Roland Eils; Peter Schirmacher; Volker Lohmann; Ralf Bartenschlager

Hepatitis C virus (HCV) is a major causative agent of chronic liver disease in humans. To gain insight into host factor requirements for HCV replication, we performed a siRNA screen of the human kinome and identified 13 different kinases, including phosphatidylinositol-4 kinase III alpha (PI4KIIIα), as being required for HCV replication. Consistent with elevated levels of the PI4KIIIα product phosphatidylinositol-4-phosphate (PI4P) detected in HCV-infected cultured hepatocytes and liver tissue from chronic hepatitis C patients, the enzymatic activity of PI4KIIIα was critical for HCV replication. Viral nonstructural protein 5A (NS5A) was found to interact with PI4KIIIα and stimulate its kinase activity. The absence of PI4KIIIα activity induced a dramatic change in the ultrastructural morphology of the membranous HCV replication complex. Our analysis suggests that the direct activation of a lipid kinase by HCV NS5A contributes critically to the integrity of the membranous viral replication complex.


Nature Methods | 2006

High-throughput RNAi screening by time-lapse imaging of live human cells.

Beate Neumann; Michael Held; Urban Liebel; Holger Erfle; Phill Rogers; Rainer Pepperkok; Jan Ellenberg

RNA interference (RNAi) is a powerful tool to study gene function in cultured cells. Transfected cell microarrays in principle allow high-throughput phenotypic analysis after gene knockdown by microscopy. But bottlenecks in imaging and data analysis have limited such high-content screens to endpoint assays in fixed cells and determination of global parameters such as viability. Here we have overcome these limitations and developed an automated platform for high-content RNAi screening by time-lapse fluorescence microscopy of live HeLa cells expressing histone-GFP to report on chromosome segregation and structure. We automated all steps, including printing transfection-ready small interfering RNA (siRNA) microarrays, fluorescence imaging and computational phenotyping of digital images, in a high-throughput workflow. We validated this method in a pilot screen assaying cell division and delivered a sensitive, time-resolved phenoprint for each of the 49 endogenous genes we suppressed. This modular platform is scalable and makes the power of time-lapse microscopy available for genome-wide RNAi screens.


Nature Cell Biology | 2012

Genome-wide RNAi screening identifies human proteins with a regulatory function in the early secretory pathway

Jeremy C. Simpson; Brigitte Joggerst; Vibor Laketa; Fatima Verissimo; Cihan Cetin; Holger Erfle; Mariana G. Bexiga; Vasanth R. Singan; Jean-Karim Hériché; Beate Neumann; Alvaro Mateos; Jonathon Blake; Stephanie Bechtel; Vladimir Benes; Stefan Wiemann; Jan Ellenberg; Rainer Pepperkok

The secretory pathway in mammalian cells has evolved to facilitate the transfer of cargo molecules to internal and cell surface membranes. Use of automated microscopy-based genome-wide RNA interference screens in cultured human cells allowed us to identify 554 proteins influencing secretion. Cloning, fluorescent-tagging and subcellular localization analysis of 179 of these proteins revealed that more than two-thirds localize to either the cytoplasm or membranes of the secretory and endocytic pathways. The depletion of 143 of them resulted in perturbations in the organization of the COPII and/or COPI vesicular coat complexes of the early secretory pathway, or the morphology of the Golgi complex. Network analyses revealed a so far unappreciated link between early secretory pathway function, small GTP-binding protein regulation, actin cytoskeleton organization and EGF-receptor-mediated signalling. This work provides an important resource for an integrative understanding of global cellular organization and regulation of the secretory pathway in mammalian cells.


FEBS Letters | 2003

A microscope-based screening platform for large-scale functional protein analysis in intact cells.

Urban Liebel; Vytaute Starkuviene; Holger Erfle; Jeremy C. Simpson; Annemarie Poustka; Stefan Wiemann; Rainer Pepperkok

A modular microscope‐based screening platform, with applications in large‐scale analysis of protein function in intact cells is described. It includes automated sample preparation, image acquisition, data management and analysis, and the genome‐wide automated retrieval of bioinformatic information. The modular nature of the system ensures that it is rapidly adaptable to new biological questions or sets of proteins. Two automated functional assays addressing protein secretion and the integrity of the Golgi complex were developed and tested. This shows the potential of the system in large‐scale, cell‐based functional proteomic projects.


Cell Metabolism | 2009

Identification of cholesterol-regulating genes by targeted RNAi screening.

Fabian Bartz; Luise Kern; Dorothee Erz; Mingang Zhu; Daniel Gilbert; Till Meinhof; Ute Wirkner; Holger Erfle; Martina U. Muckenthaler; Rainer Pepperkok; Heiko Runz

Elevated plasma cholesterol levels are considered responsible for excess cardiovascular morbidity and mortality. Cholesterol in plasma is tightly controlled by cholesterol within cells. Here, we developed and applied an integrative functional genomics strategy that allows systematic identification of regulators of cellular cholesterol levels. Candidate genes were identified by genome-wide gene-expression profiling of sterol-depleted cells and systematic literature queries. The role of these genes in cholesterol regulation was then tested by targeted siRNA knockdown experiments quantifying cellular cholesterol levels and the efficiency of low-density lipoprotein (LDL) uptake. With this strategy, 20 genes were identified as functional regulators of cellular cholesterol homeostasis. Of these, we describe TMEM97 as SREBP target gene that under sterol-depleted conditions localizes to endo-/lysosomal compartments and binds to LDL cholesterol transport-regulating protein Niemann-Pick C1 (NPC1). Taken together, TMEM97 and other factors described here are promising to yield further insights into how cells control cholesterol levels.


Current Biology | 2012

The first World Cell Race

Paolo Maiuri; Emmanuel Terriac; Perrine Paul-Gilloteaux; Timothée Vignaud; Krista A. McNally; James J. Onuffer; Kurt S. Thorn; Phuong A. Nguyen; Nefeli Georgoulia; Daniel Soong; Asier Jayo; Nina Beil; Jürgen Beneke; Joleen Chooi Hong Lim; Chloe Pei-Ying Sim; Yeh-Shiu Chu; Andrea Jiménez-Dalmaroni; Jean-François Joanny; Jean Paul Thiery; Holger Erfle; Maddy Parsons; Timothy J. Mitchison; Wendell A. Lim; Ana-Maria Lennon-Duménil; Matthieu Piel; Manuel Théry

Summary Motility is a common property of animal cells. Cell motility is required for embryogenesis [1], tissue morphogenesis [2] and the immune response [3] but is also involved in disease processes, such as metastasis of cancer cells [4]. Analysis of cell migration in native tissue in vivo has yet to be fully explored, but motility can be relatively easily studied in vitro in isolated cells. Recent evidence suggests that cells plated in vitro on thin lines of adhesive proteins printed onto culture dishes can recapitulate many features of in vivo migration on collagen fibers [5,6]. However, even with controlled in vitro measurements, the characteristics of motility are diverse and are dependent on the cell type, origin and external cues. One objective of the first World Cell Race was to perform a large-scale comparison of motility across many different adherent cell types under standardized conditions. To achieve a diverse selection, we enlisted the help of many international laboratories, who submitted cells for analysis. The large-scale analysis, made feasible by this competition-oriented collaboration, demonstrated that higher cell speed correlates with the persistence of movement in the same direction irrespective of cell origin.


BioTechniques | 2004

siRNA cell arrays for high-content screening microscopy

Holger Erfle; Jeremy C. Simpson; Philippe I. H. Bastiaens; Rainer Pepperkok

RNA interference (RNAi) is a recent advance that provides the possibility to reduce the expression of specific target genes in cultured mammalian cells with potential applications on a genome-wide scale. However, to achieve this, robust methodologies that allow automated and efficient delivery of small interfering RNAs (siRNAs) into living cultured cells and reliable quality control of siRNA function must be in place. Here we describe the production of cell arrays for reverse transfection of tissue culture cells with siRNA and plasmid DNA suitable for subsequent high-content screening microscopy applications. All the necessary transfection components are mixed prior to the robotic spotting on noncoated chambered coverglass tissue culture dishes, which are ideally suited for time-lapse microscopy applications in living cells. The addition of fibronectin to the spotting solution improves cell adherence. After cell seeding, no further cell culture manipulations, such as medium changes or the addition of 7 serum, are needed. Adaptation of the cell density improves autofocus performance for high-quality data acquisition and cell recognition. The co-transfection of a nonspecific fluorescently labeled DNA oligomer with the specific siRNA helps to mark each successfully transfected cell and cell cluster. We demonstrate such an siRNA cell array in a microscope-based functional assay in living cells to determine the effect of various siRNA oligonucleotides against endogenous targets on cellular secretion.


Journal of Biomolecular Screening | 2008

Work Flow for Multiplexing siRNA Assays by Solid-Phase Reverse Transfection in Multiwell Plates

Holger Erfle; Beate Neumann; Phill Rogers; Jutta Bulkescher; Jan Ellenberg; Rainer Pepperkok

Solid-phase reverse transfection on cell microarrays is a high-throughput method for the parallel transfection of mammalian cells. However, the cells transfected in this way have been restricted so far to microscopy-based analyses. Analysis methods such as reverse transcriptase—polymerase chain reaction (RT-PCR) and access to higher cell numbers for statistical reasons in microscopy-based assays are not possible with solid-phase reverse transfection on cell microarrays. We have developed a quick and reliable protocol for automated solid-phase reverse transfection of human cells with siRNAs in multiwell plates complementing solid-phase reverse transfection on cell microarrays. The method retains all advantages of solid-phase reverse transfection such as long-term storage capacity after fabrication, reduced cytotoxicity, and reduced cost per screen compared with liquid-phase transfection in multiwell plates. The protocol has been tested for the RNAi-mediated knockdown of several genes in different cell lines including U20S, RPE1, A549, and HeLa cells. We show that even 3 months after production of the “ready to transfect” multiwell plates, there is no reduction in their transfection efficiency as assessed by RT-PCR and nuclear phenotyping by fluorescence microscopy. We conclude that solid-phase reverse transfection in multiwell plates is a cost-efficient and flexible tool for multiplexing cellular assays. (Journal of Biomolecular Screening. 2008:575-580)


Journal of Virology | 2009

A Systems Biology Approach To Identify the Combination Effects of Human Herpesvirus 8 Genes on NF-κB Activation

Andreas Konrad; Effi Wies; Mathias Thurau; Gaby Marquardt; Elisabeth Naschberger; Sonja Hentschel; Ramona Jochmann; Thomas F. Schulz; Holger Erfle; Benedikt Brors; Berthold Lausen; Frank Neipel; Michael Stürzl

ABSTRACT Human herpesvirus 8 (HHV-8) is the etiologic agent of Kaposis sarcoma and primary effusion lymphoma. Activation of the cellular transcription factor nuclear factor-kappa B (NF-κB) is essential for latent persistence of HHV-8, survival of HHV-8-infected cells, and disease progression. We used reverse-transfected cell microarrays (RTCM) as an unbiased systems biology approach to systematically analyze the effects of HHV-8 genes on the NF-κB signaling pathway. All HHV-8 genes individually (n = 86) and, additionally, all K and latent genes in pairwise combinations (n = 231) were investigated. Statistical analyses of more than 14,000 transfections identified ORF75 as a novel and confirmed K13 as a known HHV-8 activator of NF-κB. K13 and ORF75 showed cooperative NF-κB activation. Small interfering RNA-mediated knockdown of ORF75 expression demonstrated that this gene contributes significantly to NF-κB activation in HHV-8-infected cells. Furthermore, our approach confirmed K10.5 as an NF-κB inhibitor and newly identified K1 as an inhibitor of both K13- and ORF75-mediated NF-κB activation. All results obtained with RTCM were confirmed with classical transfection experiments. Our work describes the first successful application of RTCM for the systematic analysis of pathofunctions of genes of an infectious agent. With this approach, ORF75 and K1 were identified as novel HHV-8 regulatory molecules on the NF-κB signal transduction pathway. The genes identified may be involved in fine-tuning of the balance between latency and lytic replication, since this depends critically on the state of NF-κB activity.

Collaboration


Dive into the Holger Erfle's collaboration.

Top Co-Authors

Avatar

Karl Rohr

Heidelberg University

View shared research outputs
Top Co-Authors

Avatar

Wilhelm Ansorge

European Bioinformatics Institute

View shared research outputs
Top Co-Authors

Avatar

Hartmut Voss

European Bioinformatics Institute

View shared research outputs
Top Co-Authors

Avatar

Rainer Pepperkok

European Bioinformatics Institute

View shared research outputs
Top Co-Authors

Avatar

Christian Schwager

German Cancer Research Center

View shared research outputs
Top Co-Authors

Avatar

Josef Stegemann

European Bioinformatics Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

J. Zimmermann

European Bioinformatics Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge