Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Holger J. Schünemann is active.

Publication


Featured researches published by Holger J. Schünemann.


BMJ | 2008

GRADE: an emerging consensus on rating quality of evidence and strength of recommendations

Gordon H. Guyatt; Andrew D Oxman; Gunn Elisabeth Vist; Regina Kunz; Yngve Falck-Ytter; Pablo Alonso-Coello; Holger J. Schünemann

Guidelines are inconsistent in how they rate the quality of evidence and the strength of recommendations. This article explores the advantages of the GRADE system, which is increasingly being adopted by organisations worldwide


BMJ | 2004

Grading quality of evidence and strength of recommendations.

David Atkins; Dana Best; Peter A. Briss; Martin Eccles; Yngve Falck-Ytter; Signe Flottorp; Gordon H. Guyatt; Robin Harbour; Margaret C Haugh; David Henry; Suzanne Hill; Roman Jaeschke; Gillian Leng; Alessandro Liberati; Nicola Magrini; James Mason; Philippa Middleton; Jacek Mrukowicz; Dianne O'Connell; Andrew D Oxman; Bob Phillips; Holger J. Schünemann; Tessa Tan-Torres Edejer; Helena Varonen; Gunn E Vist; John W Williams; Stephanie Zaza

Abstract Users of clinical practice guidelines and other recommendations need to know how much confidence they can place in the recommendations. Systematic and explicit methods of making judgments can reduce errors and improve communication. We have developed a system for grading the quality of evidence and the strength of recommendations that can be applied across a wide range of interventions and contexts. In this article we present a summary of our approach from the perspective of a guideline user. Judgments about the strength of a recommendation require consideration of the balance between benefits and harms, the quality of the evidence, translation of the evidence into specific circumstances, and the certainty of the baseline risk. It is also important to consider costs (resource utilisation) before making a recommendation. Inconsistencies among systems for grading the quality of evidence and the strength of recommendations reduce their potential to facilitate critical appraisal and improve communication of these judgments. Our system for guiding these complex judgments balances the need for simplicity with the need for full and transparent consideration of all important issues. Clinical guidelines are only as good as the evidence and judgments they are based on. The GRADE approach aims to make it easier for users to assess the judgments behind recommendations


BMJ | 2008

What is "quality of evidence" and why is it important to clinicians?

Gordon H. Guyatt; Andrew D Oxman; Regina Kunz; Gunn E Vist; Yngve Falck-Ytter; Holger J. Schünemann

Guideline developers use a bewildering variety of systems to rate the quality of the evidence underlying their recommendations. Some are facile, some confused, and others sophisticated but complex


BMJ | 2008

Going from evidence to recommendations

Gordon H. Guyatt; Andrew D Oxman; Regina Kunz; Yngve Falck-Ytter; Gunn E Vist; Alessandro Liberati; Holger J. Schünemann

The GRADE system classifies recommendations made in guidelines as either strong or weak. This article explores the meaning of these descriptions and their implications for patients, clinicians, and policy makers


Journal of Clinical Epidemiology | 2011

GRADE guidelines: 1. Introduction—GRADE evidence profiles and summary of findings tables

Gordon H. Guyatt; Andrew D Oxman; Elie A. Akl; Regina Kunz; Gunn Elisabeth Vist; Jan Brozek; Susan L. Norris; Yngve Falck-Ytter; Paul Glasziou; Hans deBeer; Roman Jaeschke; David Rind; Joerg J. Meerpohl; Philipp Dahm; Holger J. Schünemann

This article is the first of a series providing guidance for use of the Grading of Recommendations Assessment, Development, and Evaluation (GRADE) system of rating quality of evidence and grading strength of recommendations in systematic reviews, health technology assessments (HTAs), and clinical practice guidelines addressing alternative management options. The GRADE process begins with asking an explicit question, including specification of all important outcomes. After the evidence is collected and summarized, GRADE provides explicit criteria for rating the quality of evidence that include study design, risk of bias, imprecision, inconsistency, indirectness, and magnitude of effect. Recommendations are characterized as strong or weak (alternative terms conditional or discretionary) according to the quality of the supporting evidence and the balance between desirable and undesirable consequences of the alternative management options. GRADE suggests summarizing evidence in succinct, transparent, and informative summary of findings tables that show the quality of evidence and the magnitude of relative and absolute effects for each important outcome and/or as evidence profiles that provide, in addition, detailed information about the reason for the quality of evidence rating. Subsequent articles in this series will address GRADEs approach to formulating questions, assessing quality of evidence, and developing recommendations.


Journal of Clinical Epidemiology | 2011

GRADE guidelines: 9. Rating up the quality of evidence.

Gordon H. Guyatt; Andrew D Oxman; Shahnaz Sultan; Paul Glasziou; Elie A. Akl; Pablo Alonso-Coello; David Atkins; Regina Kunz; Jan Brozek; Victor M. Montori; Roman Jaeschke; David Rind; Philipp Dahm; Joerg J. Meerpohl; Gunn Elisabeth Vist; Elise Berliner; Susan L. Norris; Yngve Falck-Ytter; M. Hassan Murad; Holger J. Schünemann

The most common reason for rating up the quality of evidence is a large effect. GRADE suggests considering rating up quality of evidence one level when methodologically rigorous observational studies show at least a two-fold reduction or increase in risk, and rating up two levels for at least a five-fold reduction or increase in risk. Systematic review authors and guideline developers may also consider rating up quality of evidence when a dose-response gradient is present, and when all plausible confounders or biases would decrease an apparent treatment effect, or would create a spurious effect when results suggest no effect. Other considerations include the rapidity of the response, the underlying trajectory of the condition, and indirect evidence.


Journal of Clinical Epidemiology | 2011

GRADE guidelines: 4. Rating the quality of evidence—study limitations (risk of bias)

Gordon H. Guyatt; Andrew D Oxman; Gunn Elisabeth Vist; Regina Kunz; Jan Brozek; Pablo Alonso-Coello; Victor M. Montori; Elie A. Akl; Ben Djulbegovic; Yngve Falck-Ytter; Susan L. Norris; John W Williams; David Atkins; Joerg J. Meerpohl; Holger J. Schünemann

In the GRADE approach, randomized trials start as high-quality evidence and observational studies as low-quality evidence, but both can be rated down if most of the relevant evidence comes from studies that suffer from a high risk of bias. Well-established limitations of randomized trials include failure to conceal allocation, failure to blind, loss to follow-up, and failure to appropriately consider the intention-to-treat principle. More recently recognized limitations include stopping early for apparent benefit and selective reporting of outcomes according to the results. Key limitations of observational studies include use of inappropriate controls and failure to adequately adjust for prognostic imbalance. Risk of bias may vary across outcomes (e.g., loss to follow-up may be far less for all-cause mortality than for quality of life), a consideration that many systematic reviews ignore. In deciding whether to rate down for risk of bias--whether for randomized trials or observational studies--authors should not take an approach that averages across studies. Rather, for any individual outcome, when there are some studies with a high risk, and some with a low risk of bias, they should consider including only the studies with a lower risk of bias.


Journal of Clinical Epidemiology | 2011

GRADE guidelines: 7. Rating the quality of evidence--inconsistency

Gordon H. Guyatt; Andrew D Oxman; Regina Kunz; James Woodcock; Jan Brozek; Mark Helfand; Pablo Alonso-Coello; Paul Glasziou; Roman Jaeschke; Elie A. Akl; Susan L. Norris; Gunn Elisabeth Vist; Philipp Dahm; Vijay K. Shukla; Julian P. T. Higgins; Yngve Falck-Ytter; Holger J. Schünemann

This article deals with inconsistency of relative (rather than absolute) treatment effects in binary/dichotomous outcomes. A body of evidence is not rated up in quality if studies yield consistent results, but may be rated down in quality if inconsistent. Criteria for evaluating consistency include similarity of point estimates, extent of overlap of confidence intervals, and statistical criteria including tests of heterogeneity and I(2). To explore heterogeneity, systematic review authors should generate and test a small number of a priori hypotheses related to patients, interventions, outcomes, and methodology. When inconsistency is large and unexplained, rating down quality for inconsistency is appropriate, particularly if some studies suggest substantial benefit, and others no effect or harm (rather than only large vs. small effects). Apparent subgroup effects may be spurious. Credibility is increased if subgroup effects are based on a small number of a priori hypotheses with a specified direction; subgroup comparisons come from within rather than between studies; tests of interaction generate low P-values; and have a biological rationale.


Journal of Clinical Epidemiology | 2011

GRADE guidelines: 8. Rating the quality of evidence-Indirectness

Gordon H. Guyatt; Andrew D Oxman; Regina Kunz; James Woodcock; Jan Brozek; Mark Helfand; Pablo Alonso-Coello; Yngve Falck-Ytter; Roman Jaeschke; Gunn Elisabeth Vist; Elie A. Akl; Piet N. Post; Susan L. Norris; Joerg J. Meerpohl; Vijay K. Shukla; Mona Nasser; Holger J. Schünemann

Direct evidence comes from research that directly compares the interventions in which we are interested when applied to the populations in which we are interested and measures outcomes important to patients. Evidence can be indirect in one of four ways. First, patients may differ from those of interest (the term applicability is often used for this form of indirectness). Secondly, the intervention tested may differ from the intervention of interest. Decisions regarding indirectness of patients and interventions depend on an understanding of whether biological or social factors are sufficiently different that one might expect substantial differences in the magnitude of effect. Thirdly, outcomes may differ from those of primary interest-for instance, surrogate outcomes that are not themselves important, but measured in the presumption that changes in the surrogate reflect changes in an outcome important to patients. A fourth type of indirectness, conceptually different from the first three, occurs when clinicians must choose between interventions that have not been tested in head-to-head comparisons. Making comparisons between treatments under these circumstances requires specific statistical methods and will be rated down in quality one or two levels depending on the extent of differences between the patient populations, co-interventions, measurements of the outcome, and the methods of the trials of the candidate interventions.


Journal of Clinical Epidemiology | 2011

GRADE guidelines: 2. Framing the question and deciding on important outcomes

Gordon H. Guyatt; Andrew D Oxman; Regina Kunz; David Atkins; Jan Brozek; Gunn E Vist; Philip Alderson; Paul Glasziou; Yngve Falck-Ytter; Holger J. Schünemann

GRADE requires a clear specification of the relevant setting, population, intervention, and comparator. It also requires specification of all important outcomes--whether evidence from research studies is, or is not, available. For a particular management question, the population, intervention, and outcome should be sufficiently similar across studies that a similar magnitude of effect is plausible. Guideline developers should specify the relative importance of the outcomes before gathering the evidence and again when evidence summaries are complete. In considering the importance of a surrogate outcome, authors should rate the importance of the patient-important outcome for which the surrogate is a substitute and subsequently rate down the quality of evidence for indirectness of outcome.

Collaboration


Dive into the Holger J. Schünemann's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Elie A. Akl

American University of Beirut

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Andrew D Oxman

Norwegian Institute of Public Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge