Holger Klose
RWTH Aachen University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Holger Klose.
Biotechnology for Biofuels | 2014
Camilla Lambertz; Megan Garvey; Johannes Klinger; Dirk Heesel; Holger Klose; Rainer Fischer; Ulrich Commandeur
Second generation biofuel development is increasingly reliant on the recombinant expression of cellulases. Designing or identifying successful expression systems is thus of preeminent importance to industrial progress in the field. Recombinant production of cellulases has been performed using a wide range of expression systems in bacteria, yeasts and plants. In a number of these systems, particularly when using bacteria and plants, significant challenges have been experienced in expressing full-length proteins or proteins at high yield. Further difficulties have been encountered in designing recombinant systems for surface-display of cellulases and for use in consolidated bioprocessing in bacteria and yeast. For establishing cellulase expression in plants, various strategies are utilized to overcome problems, such as the auto-hydrolysis of developing plant cell walls. In this review, we investigate the major challenges, as well as the major advances made to date in the recombinant expression of cellulases across the commonly used bacterial, plant and yeast systems. We review some of the critical aspects to be considered for industrial-scale cellulase production.
Biotechnology for Biofuels | 2012
Holger Klose; Juliane Röder; Michele Girfoglio; Rainer Fischer; Ulrich Commandeur
BackgroundThe enzymatic conversion of lignocellulosic plant biomass into fermentable sugars is a crucial step in the sustainable and environmentally friendly production of biofuels. However, a major drawback of enzymes from mesophilic sources is their suboptimal activity under established pretreatment conditions, e.g. high temperatures, extreme pH values and high salt concentrations. Enzymes from extremophiles are better adapted to these conditions and could be produced by heterologous expression in microbes, or even directly in the plant biomass.ResultsHere we show that a cellulase gene (sso1354) isolated from the hyperthermophilic archaeon Sulfolobus solfataricus can be expressed in plants, and that the recombinant enzyme is biologically active and exhibits the same properties as the wild type form. Since the enzyme is inactive under normal plant growth conditions, this potentially allows its expression in plants without negative effects on growth and development, and subsequent heat-inducible activation. Furthermore we demonstrate that the recombinant enzyme acts in high concentrations of ionic liquids and can therefore degrade α-cellulose or even complex cell wall preparations under those pretreatment conditions.ConclusionThe hyperthermophilic endoglucanase SSO1354 with its unique features is an excellent tool for advanced biomass conversion. Here we demonstrate its expression in planta and the possibility for post harvest activation. Moreover the enzyme is suitable for combined pretreatment and hydrolysis applications.
Biotechnology for Biofuels | 2013
Holger Klose; Markus Günl; Björn Usadel; Rainer Fischer; Ulrich Commandeur
BackgroundPlant-produced biomass-degrading enzymes are promising tools for the processing of lignocellulose to fermentable sugars. A major limitation of in planta production is that high-level expression of such enzymes could potentially affect the structure and integrity of the plant cell wall and negatively influence plant growth and development.ResultsHere, we evaluate the impact on tobacco plant development of constitutive versus alcohol-inducible expression of the endoglucanase TrCel5A from the mesophilic fungus Trichoderma reesei. Using this system, we are able to demonstrate that constitutive expression of the enzyme, controlled by the doubled Cauliflower Mosaic Virus promoter, leads to lower cellulose content of the plant combined with severe effects on plant growth. However, using an alcohol-inducible expression of the endoglucanase in the plant leaves, we achieved similar enzymatic expression levels with no changes in the crystalline cellulose content.ConclusionWe were able to produce significant amounts of cellulase in the plant leaves without detrimental effects to plant development. These results demonstrate the potential feasibility of an inducible expression system for producing biomass degrading enzymes in plants.
Gcb Bioenergy | 2017
Nicolai David Jablonowski; Tobias Kollmann; Moritz Nabel; Tatjana Damm; Holger Klose; Michael Müller; Marc Bläsing; Sören Seebold; Simone Krafft; Isabel Kuperjans; Markus Dahmen; Ulrich Schurr
The performance and biomass yield of the perennial energy plant Sida hermaphrodita (hereafter referred to as Sida) as a feedstock for biogas and solid fuel was evaluated throughout one entire growing period at agricultural field conditions. A Sida plant development code was established to allow comparison of the plant growth stages and biomass composition. Four scenarios were evaluated to determine the use of Sida biomass with regard to plant development and harvest time: (i) one harvest for solid fuel only; (ii) one harvest for biogas production only; (iii) one harvest for biogas production, followed by a harvest of the regrown biomass for solid fuel; and (iv) two consecutive harvests for biogas production. To determine Sidas value as a feedstock for combustion, we assessed the caloric value, the ash quality, and melting point with regard to DIN EN ISO norms. The results showed highest total dry biomass yields of max. 25 t ha−1, whereas the highest dry matter of 70% to 80% was obtained at the end of the growing period. Scenario (i) clearly indicated the highest energy recovery, accounting for 439 288 MJ ha−1; the energy recovery of the four scenarios from highest to lowest followed this order: (i) ≫ (iii) ≫ (iv) > (ii). Analysis of the Sida ashes showed a high melting point of >1500 °C, associated with a net calorific value of 16.5–17.2 MJ kg−1. All prerequisites for DIN EN ISO norms were achieved, indicating Sidas advantage as a solid energy carrier without any post‐treatment after harvesting. Cell wall analysis of the stems showed a constant lignin content after sampling week 16 (July), whereas cellulose had already reached a plateau in sampling week 4 (April). The results highlight Sida as a promising woody, perennial plant, providing biomass for flexible and multipurpose energy applications.
BMC Plant Biology | 2015
Holger Klose; Markus Günl; Björn Usadel; Rainer Fischer; Ulrich Commandeur
BackgroundThe development of transgenic plants as a production platform for biomass-degrading enzymes is a promising tool for an economically feasible allocation of enzymes processing lignocellulose. Previous research has already identified a major limitation of in planta production such as interference with the structure and integrity of the plant cell wall resulting in a negative influence on plant growth and development.ResultsHere, we describe the in planta expression of endoglucanase TrCel5A from the mesophilic fungus Trichoderma reesei with differential intracellular targeting and evaluate its impact on the tobacco cell wall composition. Targeting of the enzyme to the apoplast leads to distinct changes in cell polysaccharides such as glucose level in the matrix polysaccharides (MPS). These effects are combined with severe changes in plant development. Retention of TrCel5A in the endoplasmic reticulum (ER) could avoid visible effects on plant growth under the chosen conditions, but exhibits changes in the composition of the MPS.ConclusionsThese results give new insights into the complex interaction of heterologous cellulase expression with cell wall development and it outlines novel promising strategies to engineer plant cell walls for improved biomass processing.
Carbohydrate Polymers | 2017
Tatjana Damm; Sivakumar Pattathil; Markus Günl; Nicolai David Jablonowski; Malcolm A. O'Neill; Katharina Susanne Grün; Philipp M. Grande; Walter Leitner; Ulrich Schurr; Björn Usadel; Holger Klose
The perennial plant Sida hermaphrodita (Sida) is attracting attention as potential energy crop. Here, the first detailed view on non-cellulosic Sida cell wall polysaccharide composition, structure and architecture is given. Cell walls were prepared from Sida stems and sequentially extracted with aqueous buffers and alkali. The structures of the quantitatively predominant polysaccharides present in each fraction were determined by biochemical characterization, glycome profiling and mass spectrometry. The amounts of glucose released by Accellerase-1500® treatment of the cell wall and the cell wall residue remaining after each extraction were used to assess the roles of pectin and hemicellulose in the recalcitrance of Sida biomass. 4-O-Methyl glucuronoxylan with a low proportion of side substitutions was identified as the major non-cellulosic glycan component of Sida stem cell walls. Pectic polysaccharides and xylans were found to be associated with lignin, suggesting that these polysaccharides have roles in Sida cell wall recalcitrance to enzymatic hydrolysis.
Chemsuschem | 2018
Dennis Weidener; Holger Klose; Walter Leitner; Ulrich Schurr; Björn Usadel; Pablo Domínguez de María; Philipp M. Grande
To develop novel biorefinery concepts, the use of bio-based catalysts and solvents must be aligned with the principles of green chemistry. In this context, biogenic 2,5-furandicarboxylic acid (FDCA) is a very promising yet underused molecule with high potential for application as an acid catalyst, combining feasibility and sustainability with efficient and straightforward recovery. In this study, FDCA was evaluated as a catalyst in the recently developed OrganoCat pretreatment, a biphasic lignocellulose fractionation system. The catalyst was investigated for the efficient fractionation of the three main components-lignin, cellulose and noncellulosic sugars-with particular focus on the lignin quality, on the effect on enzymatic hydrolysis of the cellulosic residue, and on the noncellulosic sugar extraction. To address recovery of FDCA from the OrganoCat system, a method was developed, leading to the recovery of >97 % of FDCA with a spectroscopic purity of >99 %, maintaining full activity in consecutive runs.
Bioresource Technology | 2017
Tatjana Damm; Philipp M. Grande; Nicolai David Jablonowski; Björn Thiele; Ulrich Disko; Ulrich Mann; Ulrich Schurr; Walter Leitner; Björn Usadel; Pablo Domínguez de María; Holger Klose
A successful biorefinery needs to align suitable pretreatment with sustainable production of biomasses. Herein, four perennial plants, (Sida, Silphium, Miscanthus and Szarvasi) regarded as promising feedstocks for biorefineries were subjected to the OrganoCat pretreatment. The technology was successfully applied to the different perennial plants revealing that pretreatment of grasses was more efficient than of non-grasses. Thorough analyses of the lignocellulose - before and after fractionation - enabled a detailed description of the fate of cellulosic, non-cellulosic polysaccharides and lignin during the pretreatment. Especially Szarvasi pulp displayed outstanding results in terms of fractionation efficiency and enzymatic digestibility, though in all cases successful lignocellulose fractionation was observed. These insights into the structural composition of different perennial plant species and the impact of the OrganoCat pretreatment on the plant material leads to useful information to strategically adapt such processes to the individual lignocellulosic material aiming for a full valorisation.
New Phytologist | 2018
Bo Yang; Cătălin Voiniciuc; Lanbao Fu; Sabine Dieluweit; Holger Klose; Björn Usadel
Summary The differentiation of the seed coat epidermal (SCE) cells in Arabidopsis thaliana leads to the production of a large amount of pectin‐rich mucilage and a thick cellulosic secondary cell wall. The mechanisms by which cortical microtubules are involved in the formation of these pectinaceous and cellulosic cell walls are still largely unknown. Using a reverse genetic approach, we found that TONNEAU1 (TON1) recruiting motif 4 (TRM4) is implicated in cortical microtubule organization in SCE cells, and functions as a novel player in the establishment of mucilage structure. TRM4 is preferentially accumulated in the SCE cells at the stage of mucilage biosynthesis. The loss of TRM4 results in compact seed mucilage capsules, aberrant mucilage cellulosic structure, short cellulosic rays and disorganized cellulose microfibrils in mucilage. The defects could be rescued by transgene complementation of trm4 alleles. Probably, this is a consequence of a disrupted organization of cortical microtubules, observed using fluorescently tagged tubulin proteins in trm4 SCE cells. Furthermore, TRM4 proteins co‐aligned with microtubules and interacted directly with CELLULOSE SYNTHASE 3 in two independent assays. Together, the results indicate that TRM4 is essential for microtubule array organization and therefore correct cellulose orientation in the SCE cells, as well as the establishment of the subsequent mucilage architecture.
Trends in Biotechnology | 2013
Megan Garvey; Holger Klose; Rainer Fischer; Camilla Lambertz; Ulrich Commandeur