Holger Loessner
Paul Ehrlich Institute
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Holger Loessner.
PLOS ONE | 2009
Sara Leschner; Kathrin Westphal; Nicole Dietrich; Nuno Viegas; Jadwiga Jablonska; Marcin Lyszkiewicz; Stefan Lienenklaus; Werner Falk; Nelson O. Gekara; Holger Loessner; Siegfried Weiss
Background Several facultative anaerobic bacteria with potential therapeutic abilities are known to preferentially colonize solid tumors after systemic administration. How they efficiently find and invade the tumors is still unclear. However, this is an important issue to be clarified when bacteria should be tailored for application in cancer therapy. Methodology/Principal Findings We describe the initial events of colonization of an ectopic transplantable tumor by Salmonella enterica serovar Typhimurium. Initially, after intravenous administration, bacteria were found in blood, spleen, and liver. Low numbers were also detected in tumors associated with blood vessels as could be observed by immunohistochemistry. A rapid increase of TNF-α in blood was observed at that time, in addition to other pro-inflammatory cytokines. This induced a tremendous influx of blood into the tumors by vascular disruption that could be visualized in H&E stainings and quantified by hemoglobin measurements of tumor homogenate. Most likely, together with the blood, bacteria were flushed into the tumor. In addition, blood influx was followed by necrosis formation, bacterial growth, and infiltration of neutrophilic granulocytes. Depletion of TNF-α retarded blood influx and delayed bacterial tumor-colonization. Conclusion Our findings emphasize similarities between Gram-negative tumor-colonizing bacteria and tumor vascular disrupting agents and show the involvement of TNF-α in the initial phase of tumor-colonization by bacteria.
Cellular Microbiology | 2007
Holger Loessner; Anne Endmann; Sara Leschner; Kathrin Westphal; Manfred Rohde; Tewfik Miloud; Günter J. Hämmerling; Klaus Neuhaus; Siegfried Weiss
We have used Salmonella enterica serovar Typhimurium (S. typhimurium) which are able to colonize tumours besides spleen and liver. Bacteria were equipped with constructs encoding green fluorescent protein or luciferase as reporters under control of the promoter PBAD that is inducible with l‐arabinose. Reporter genes could be induced in culture but also when the bacteria resided within the mouse macrophages J774A.1. More important, strong expression of reporters by the bacteria could be detected in mice after administration of l‐arabinose. This was especially pronounced in bacteria colonizing tumours. Histology demonstrated that the bacteria had accumulated in and close to necrotic areas of tumours. Bacterial gene induction was observed in both regions. PBAD is tightly controlled also in vivo because gene E of bacteriophage ΦX174 could be introduced as inducible suicide gene. The possibility to deliberately induce genes in bacterial carriers within the host should render them extremely powerful tools for tumour therapy.
Cancer Research | 2008
Kathrin Westphal; Sara Leschner; Jadwiga Jablonska; Holger Loessner; Siegfried Weiss
Administration of facultative anaerobic bacteria like Salmonella typhimurium, Shigella flexneri, and Escherichia coli to tumor-bearing mice leads to a preferential accumulation and proliferation of the microorganisms within the solid tumor. Until now, all known tumor-targeting bacteria have shown poor dissemination inside the tumors. They accumulate almost exclusively in large necrotic areas and spare a rim of viable tumor cells. Interestingly, the bacteria-containing necrotic region is separated from viable tumor cells by a barrier of host neutrophils that have immigrated into the tumor. We here report that depletion of host neutrophils results in a noticeably higher total number of bacteria in the tumor and that bacteria were now also able to migrate into vital tumor tissue. Most remarkably, an increase in the size of the necrosis was observed, and complete eradication of established tumors could be observed under these conditions. Thus, bacteria-mediated tumor therapy can be amplified by depletion of host neutrophils.
Expert Opinion on Biological Therapy | 2004
Holger Loessner; Siegfried Weiss
The use of live attenuated bacterial vaccine strains allows the targeted delivery of macromolecules to mammalian cells and tissues via the mucosal route. Depending on their specific virulence mechanisms and inherent metabolic preferences, bacteria invade certain cell types and body niches where they consequently deliver their cargo. Recently, the ability of attenuated strains of Salmonella, Shigella and Yersinia spp., as well as Listeria monocytogenes and invasive Escherichia coli, to deliver eukaryotic expression plasmids into mammalian cells in vitro and in vivo has been discovered. The great potential of bacteria-mediated transfer of plasmid DNA encoding vaccine antigens and/or therapeutic molecules was demonstrated in experimental animal models of infectious diseases, tumours and gene deficiencies. The exact mechanism of DNA transfer from the bacterial vector into the mammalian host is not yet completely known. The understanding of molecular events during bacterial DNA transfer, however, will further the development of bacterial vector systems with great promise for various clinical applications.
Microbes and Infection | 2009
Holger Loessner; Sara Leschner; Anne Endmann; Kathrin Westphal; Kathrin Wolf; Katja Kochruebe; Tewfik Miloud; Josef Altenbuchner; Siegfried Weiss
The probiotic bacterium Escherichia coli Nissle 1917 (EcN) constitutes a prospective vector for delivering heterologous therapeutic molecules to treat several human disorders. To add versatility to this carrier system, bacteria should be equipped with expression modules that can be regulated deliberately in a temporal and quantitative manner. This approach is called in vivo remote control (IVRC) of bacterial vectors. Here, we have evaluated promoters P(araBAD), P(rhaBAD) and P(tet), which can be induced with L-arabinose, L-rhamnose or anhydrotetracycline, respectively. EcN harboring promoter constructs with luciferase as reporter gene were administered either orally to healthy mice or intravenously to tumor bearing animals. Subsequent to bacterial colonization of tissues, inducer substances were administered via the oral or systemic route. By use of in vivo bioluminescence imaging, the time course of reporter gene expression was analyzed. Each promoter displayed a specific in vivo induction profile depending on the niche of bacterial residence and the route of inducer administration. Importantly, we also observed colonization of gall bladders of mice when EcN was administered systemically at high doses. Bacteria in this anatomical compartment remained accessible to remote control of bacterial gene expression.
PLOS ONE | 2011
Piotr Bielecki; Jacek Puchałka; Melissa L. Wos-Oxley; Holger Loessner; Justyna Glik; Marek Kawecki; Mariusz Nowak; Burkhard Tümmler; Siegfried Weiss; Vitor A. P. Martins dos Santos
Pseudomonas aeruginosa is a threatening, opportunistic pathogen causing disease in immunocompromised individuals. The hallmark of P. aeruginosa virulence is its multi-factorial and combinatorial nature. It renders such bacteria infectious for many organisms and it is often resistant to antibiotics. To gain insights into the physiology of P. aeruginosa during infection, we assessed the transcriptional programs of three different P. aeruginosa strains directly after isolation from burn wounds of humans. We compared the programs to those of the same strains using two infection models: a plant model, which consisted of the infection of the midrib of lettuce leaves, and a murine tumor model, which was obtained by infection of mice with an induced tumor in the abdomen. All control conditions of P. aeruginosa cells growing in suspension and as a biofilm were added to the analysis. We found that these different P. aeruginosa strains express a pool of distinct genetic traits that are activated under particular infection conditions regardless of their genetic variability. The knowledge herein generated will advance our understanding of P. aeruginosa virulence and provide valuable cues for the definition of prospective targets to develop novel intervention strategies.
Cellular Microbiology | 2011
Katja Crull; Manfred Rohde; Kathrin Westphal; Holger Loessner; Kathrin Wolf; Alfonso Felipe-López; Michael Hensel; Siegfried Weiss
Systemic administration of Salmonella enterica serovar Typhimurium to tumour bearing mice results in preferential colonization of the tumours and retardation of tumour growth. Although the bacteria are able to invade the tumour cells in vitro, in tumours they were never detected intracellularly. Ultrastructural analysis of Salmonella‐colonized tumours revealed that the bacteria had formed biofilms. Interestingly, depletion of neutrophilic granulocytes drastically reduced biofilm formation. Obviously, bacteria form biofilms in response to the immune reactions of the host. Importantly, we tested Salmonella mutants that were no longer able to form biofilms by deleting central regulators of biofilm formation. Such bacteria could be observed intracellularly in immune cells of the host or in tumour cells. Thus, tumour colonizing S. typhimurium might form biofilms as protection against phagocytosis. Since other bacteria are behaving similarly, solid murine tumours might represent a unique model to study biofilm formation in vivo.
Nucleic Acids Research | 2012
Sara Leschner; Igor V. Deyneko; Stefan Lienenklaus; Kathrin Wolf; Helmut Bloecker; Dirk Bumann; Holger Loessner; Siegfried Weiss
Conventional cancer therapies are often limited in effectiveness and exhibit strong side effects. Therefore, alternative therapeutic strategies are demanded. The employment of tumor-colonizing bacteria that exert anticancer effects is such a novel approach that attracts increasing attention. For instance, Salmonella enterica serovar Typhimurium has been used in many animal tumor models as well as in first clinical studies. These bacteria exhibit inherent tumoricidal effects. In addition, they can be used to deliver therapeutic agents. However, bacterial expression has to be restricted to the tumor to prevent toxic substances from harming healthy tissue. Therefore, we screened an S. Typhimurium promoter-trap library to identify promoters that exclusively drive gene expression in the cancerous tissue. Twelve elements could be detected that show reporter gene expression in tumors but not in spleen and liver. In addition, a DNA motif was identified that appears to be necessary for tumor specificity. Now, such tumor-specific promoters can be used to safely express therapeutic proteins by tumor-colonizing S. Typhimurium directly in the neoplasia.
Microbes and Infection | 2012
Uliana Komor; Piotr Bielecki; Holger Loessner; Manfred Rohde; Kathrin Wolf; Kathrin Westphal; Siegfried Weiss; Susanne Häussler
The ability of opportunistic bacterial pathogens to grow in biofilms is decisive in the pathogenesis of chronic infectious diseases. Growth within biofilms does not only protect the bacteria against the host immune system but also from the killing by antimicrobial agents. Here, we introduce a mouse model in which intravenously administered planktonic Pseudomonas aeruginosa bacteria are enriched in transplantable subcutaneous mouse tumors. Electron microscopy images provide evidence that such bacteria reside in the tumor tissue within biofilm structures. Immunohistology furthermore demonstrated that infection of the tumor tissue elicits a host response characterized by strong neutrophilic influx. Interestingly, the biofilm defective PA14 pqsA transposon mutant formed less biofilm in vivo and was more susceptible to clearance by intravenous ciprofloxacin treatment as compared to the wild-type control. In conclusion, we have established an experimentally tractable model that may serve to identify novel bacterial and host factors important for in vivo biofilm formation and to re-evaluate bactericidal and anti-biofilm effects of currently used and novel antibacterial compounds.
Cell Host & Microbe | 2017
Nicole Tegtmeyer; Silja Wessler; Vittorio Necchi; Manfred Rohde; Aileen Harrer; Tilman T. Rau; Carmen Isabell Asche; Manja Boehm; Holger Loessner; Ceu Figueiredo; Michael Naumann; Ralf Palmisano; Enrico Solcia; Vittorio Ricci; Steffen Backert
The Helicobacter pylori (Hp) type IV secretion system (T4SS) forms needle-like pili, whose binding to the integrin-β1 receptor results in injection of the CagA oncoprotein. However, the apical surface of epithelial cells is exposed to Hp, whereas integrins are basolateral receptors. Hence, the mechanism of CagA delivery into polarized gastric epithelial cells remains enigmatic. Here, we demonstrate that T4SS pilus formation during infection of polarized cells occurs predominantly at basolateral membranes, and not at apical sites. Hp accomplishes this by secreting another bacterial protein, the serine protease HtrA, which opens cell-to-cell junctions through cleaving epithelial junctional proteins including occludin, claudin-8, and E-cadherin. Using a genetic system expressing a peptide inhibitor, we demonstrate that HtrA activity is necessary for paracellular transmigration of Hp across polarized cell monolayers to reach basolateral membranes and inject CagA. The contribution of this unique signaling cascade to Hp pathogenesis is discussed.