Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Holger M. Reichardt is active.

Publication


Featured researches published by Holger M. Reichardt.


Cell | 1998

DNA Binding of the Glucocorticoid Receptor Is Not Essential for Survival

Holger M. Reichardt; Klaus H. Kaestner; Jan Tuckermann; Oliver Kretz; Oliver Wessely; Rudolf Bock; Peter Gass; Wolfgang Schmid; Peter Herrlich; Peter Angel; Günther Schütz

Transcriptional regulation by the glucocorticoid receptor (GR) is essential for survival. Since the GR can influence transcription both through DNA-binding-dependent and -independent mechanisms, we attempted to assess their relative importance in vivo. In order to separate these modes of action, we introduced the point mutation A458T into the GR by gene targeting using the Cre/loxP system. This mutation impairs dimerization and therefore GRE-dependent transactivation while functions that require cross-talk with other transcription factors, such as transrepression of AP-1-driven genes, remain intact. In contrast to GR-/- mice, these mutants termed GRdim are viable, revealing the in vivo relevance of DNA-binding-independent activities of the GR.


The EMBO Journal | 2001

Repression of inflammatory responses in the absence of DNA binding by the glucocorticoid receptor

Holger M. Reichardt; Jan Tuckermann; Martin Göttlicher; Maja Vujic; Falk Weih; Peter Angel; Peter Herrlich; Günther Schütz

The glucocorticoid receptor (GR) acts both as a transcription factor itself on genes carrying GR response elements (GREs) and as a modulator of other transcription factors. Using mice with a mutation in the GR, which cannot activate GRE promoters, we examine whether the important anti‐inflammatory and immune suppressive functions of glucocorticoids (GCs) can be established in this in vivo animal model. We find that most actions are indeed exerted in the absence of the DNA‐binding ability of the GR: inhibition of the inflammatory response of locally irritated skin and of the systemic response to lipopolysaccharides. GCs repress the expression and release of numerous cytokines both in vivo and in isolated primary macrophages, thymocytes and CD4+ splenocytes. A transgenic reporter gene controlled by NF‐κB exclusively is also repressed, suggesting that protein– protein interaction with other transcription factors such as NF‐κB forms the basis of the anti‐inflammatory activity of GR. The only defect of immune suppression detected so far concerns the induced apoptosis of thymocytes and T lymphocytes.


Proceedings of the National Academy of Sciences of the United States of America | 2001

Point mutation in the mouse glucocorticoid receptor preventing DNA binding impairs spatial memory

Oitzl; Holger M. Reichardt; Marian Joëls; E.R. de Kloet

Activation of central glucocorticoid receptors caused by the stress that is associated with a learning task facilitates storage of the acquired information. The molecular mechanism underlying this phenomenon is entirely unknown. Glucocorticoid receptors can influence transcription both through DNA binding-dependent and -independent mechanisms. To assess the importance of these two modes of action for spatial memory, we here used male mutant mice in which homodimerization and DNA binding of the glucocorticoid receptor is largely prevented (GRdim/dim) while protein–protein interactions still can take place. These mice showed a selective impairment of spatial memory in the water maze. Locomotion and anxiety-related parameters measured in an open field and a light/dark preference task were comparable for mutant and control mice. Mutant mice released more corticosterone than control mice under basal resting conditions and in response to swimming, which could have influenced memory processes of the mice. However, mimicking the task-related increase in corticosterone by supplementary injection of corticosterone (250 μg/kg, i.p.) in adrenalectomized mice, resulting in equal plasma corticosterone concentrations in both genotypes, improved spatial memory of control mice but had no effect on mutant mice. These findings suggest that task-related facilitating effects of corticosterone on spatial memory indeed depend on DNA binding of the glucocorticoid receptor rather than on protein–protein interactions of the receptor with other transcription factors. Although it cannot be excluded that both processes are involved in a coordinated way, interrupting the DNA-binding capacity of the receptor is sufficient to induce impairment.


Cellular and Molecular Life Sciences | 2006

Glucocorticoids in T cell apoptosis and function.

Marco J. Herold; Kirsty McPherson; Holger M. Reichardt

Abstract.Glucocorticoids (GCs) are a class of steroid hormones which regulate a variety of essential biological functions. The profound anti-inflammatory and immunosuppressive activity of synthetic GCs, combined with their power to induce lymphocyte apoptosis place them among the most commonly prescribed drugs worldwide. Endogenous GCs also exert a wide range of immunomodulatory activities, including the control of T cell homeostasis. Most, if not all of these effects are mediated through the glucocorticoid receptor, a member of the nuclear receptor superfamily. However, the signaling pathways and their cell type specificity remain poorly defined. In this review, we summarize our present knowledge on GC action, the mechanisms employed to induce apoptosis and the currently discussed models of how they may participate in thymocyte development. Although our knowledge in this field has substantially increased during recent years, we are still far from a comprehensive picture of the role that GCs play in T lymphocytes.


American Journal of Physiology-endocrinology and Metabolism | 2008

The glucocorticoid receptor and FOXO1 synergistically activate the skeletal muscle atrophy-associated MuRF1 gene

David Waddell; Leslie M. Baehr; Jens van den Brandt; Steven A. Johnsen; Holger M. Reichardt; J. David Furlow; Sue C. Bodine

The muscle specific ubiquitin E3 ligase MuRF1 has been implicated as a key regulator of muscle atrophy under a variety of conditions, such as during synthetic glucocorticoid treatment. FOXO class transcription factors have been proposed as important regulators of MuRF1 expression, but its regulation by glucocorticoids is not well understood. The MuRF1 promoter contains a near-perfect palindromic glucocorticoid response element (GRE) 200 base pairs upstream of the transcription start site. The GRE is highly conserved in the mouse, rat, and human genes along with a directly adjacent FOXO binding element (FBE). Transient transfection assays in HepG2 cells and C(2)C(12) myotubes demonstrate that the MuRF1 promoter is responsive to both the dexamethasone (DEX)-activated glucocorticoid receptor (GR) and FOXO1, whereas coexpression of GR and FOXO1 leads to a dramatic synergistic increase in reporter gene activity. Mutation of either the GRE or the FBE significantly impairs activation of the MuRF1 promoter. Consistent with these findings, DEX-induced upregulation of MuRF1 is significantly attenuated in mice expressing a homodimerization-deficient GR despite no effect on the degree of muscle loss in these mice vs. their wild-type counterparts. Finally, chromatin immunoprecipitation analysis reveals that both GR and FOXO1 bind to the endogenous MuRF1 promoter in C(2)C(12) myotubes, and IGF-I inhibition of DEX-induced MuRF1 expression correlates with the loss of FOXO1 binding. These findings present new insights into the role of the GR and FOXO family of transcription factors in the transcriptional regulation of the MuRF1 gene, a direct target of the GR in skeletal muscle.


Cell Metabolism | 2010

Glucocorticoids Suppress Bone Formation by Attenuating Osteoblast Differentiation via the Monomeric Glucocorticoid Receptor

Alexander Rauch; Sebastian Seitz; Ulrike Baschant; Arndt F. Schilling; Anett Illing; Brenda D. Stride; Milen Kirilov; Vice Mandic; Andrea Takacz; Ruth Schmidt-Ullrich; Susanne Ostermay; Thorsten Schinke; Rainer Spanbroek; Mario M. Zaiss; Peter Angel; Ulf H. Lerner; Jean-Pierre David; Holger M. Reichardt; Michael Amling; Günther Schütz; Jan Tuckermann

Development of osteoporosis severely complicates long-term glucocorticoid (GC) therapy. Using a Cre-transgenic mouse line, we now demonstrate that GCs are unable to repress bone formation in the absence of glucocorticoid receptor (GR) expression in osteoblasts as they become refractory to hormone-induced apoptosis, inhibition of proliferation, and differentiation. In contrast, GC treatment still reduces bone formation in mice carrying a mutation that only disrupts GR dimerization, resulting in bone loss in vivo, enhanced apoptosis, and suppressed differentiation in vitro. The inhibitory GC effects on osteoblasts can be explained by a mechanism involving suppression of cytokines, such as interleukin 11, via interaction of the monomeric GR with AP-1, but not NF-kappaB. Thus, GCs inhibit cytokines independent of GR dimerization and thereby attenuate osteoblast differentiation, which accounts, in part, for bone loss during GC therapy.


Molecular and Cellular Biology | 2000

Mice with an Increased Glucocorticoid Receptor Gene Dosage Show Enhanced Resistance to Stress and Endotoxic Shock

Holger M. Reichardt; Thorsten Umland; Anton Bauer; Oliver Kretz; Günther Schütz

ABSTRACT Targeted mutagenesis of the glucocorticoid receptor has revealed an essential function for survival and the regulation of multiple physiological processes. To investigate the effects of an increased gene dosage of the receptor, we have generated transgenic mice carrying two additional copies of the glucocorticoid receptor gene by using a yeast artificial chromosome. Interestingly, overexpression of the glucocorticoid receptor alters the basal regulation of the hypothalamo-pituitary-adrenal axis, resulting in reduced expression of corticotropin-releasing hormone and adrenocorticotrope hormone and a fourfold reduction in the level of circulating glucocorticoids. In addition, primary thymocytes obtained from transgenic mice show an enhanced sensitivity to glucocorticoid-induced apoptosis. Finally, analysis of these mice under challenge conditions revealed that expression of the glucocorticoid receptor above wild-type levels leads to a weaker response to restraint stress and a strongly increased resistance to lipopolysaccharide-induced endotoxic shock. These results underscore the importance of tight regulation of glucocorticoid receptor expression for the control of physiological and pathological processes. Furthermore, they may explain differences in the susceptibility of humans to inflammatory diseases and stress, depending on individual prenatal and postnatal experiences known to influence the expression of the glucocorticoid receptor.


Current Opinion in Genetics & Development | 1998

Genetic dissection of glucocorticoid receptor function in mice

François Tronche; Christoph Kellendonk; Holger M. Reichardt; Günther Schütz

Upon hormone binding, the activated glucocorticoid receptor (GR) functions as a transcription factor via different modes of action to control gene expression. Recent gene-targeting studies in mice provide new insight into the role of GR in vivo and are helping decipher the molecular mechanisms underlying its actions.


Journal of Clinical Investigation | 2007

Macrophages and neutrophils are the targets for immune suppression by glucocorticoids in contact allergy

Jan Tuckermann; Anna Kleiman; Richard Moriggl; Rainer Spanbroek; Anita Neumann; Anett Illing; Björn E. Clausen; Brenda D. Stride; Irmgard Förster; Andreas J.R. Habenicht; Holger M. Reichardt; François Tronche; Wolfgang Schmid; Günther Schütz

Glucocorticoids (GCs) are widely used in the treatment of allergic skin conditions despite having numerous side effects. Here we use Cre/loxP-engineered tissue- and cell-specific and function-selective GC receptor (GR) mutant mice to identify responsive cell types and molecular mechanisms underlying the antiinflammatory activity of GCs in contact hypersensitivity (CHS). CHS was repressed by GCs only at the challenge phase, i.e., during reexposure to the hapten. Inactivation of the GR gene in keratinocytes or T cells of mutant mice did not attenuate the effects of GCs, but its ablation in macrophages and neutrophils abolished downregulation of the inflammatory response. Moreover, mice expressing a DNA binding-defective GR were also resistant to GC treatment. The persistent infiltration of macrophages and neutrophils in these mice is explained by an impaired repression of inflammatory cytokines and chemokines such as IL-1beta, monocyte chemoattractant protein-1, macrophage inflammatory protein-2, and IFN-gamma-inducible protein 10. In contrast TNF-alpha repression remained intact. Consequently, injection of recombinant proteins of these cytokines and chemokines partially reversed suppression of CHS by GCs. These studies provide evidence that in contact allergy, therapeutic action of corticosteroids is in macrophages and neutrophils and that dimerization GR is required.


Nature Neuroscience | 2000

Corticosteroid actions in hippocampus require DNA binding of glucocorticoid receptor homodimers

Henk Karst; Y.J.G. Karten; Holger M. Reichardt; E.R. de Kloet; Günther Schütz; Marian Joëls

Glucocorticoids are secreted from the adrenal gland in very high amounts after stress. In the brain, these stress hormones potently modulate ionic currents, monoaminergic transmission, synaptic plasticity and cellular viability, most notably in the hippocampus where corticosteroid receptors are highly enriched. Here we show that at least some of these actions require DNA binding of glucocorticoid receptor (GR) homodimers.

Collaboration


Dive into the Holger M. Reichardt's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Fred Lühder

University of Göttingen

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Günther Schütz

German Cancer Research Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Nora Müller

University of Würzburg

View shared research outputs
Top Co-Authors

Avatar

Ralf Gold

Ruhr University Bochum

View shared research outputs
Top Co-Authors

Avatar

François Tronche

Centre national de la recherche scientifique

View shared research outputs
Researchain Logo
Decentralizing Knowledge