Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Holger N. Lode is active.

Publication


Featured researches published by Holger N. Lode.


Journal of Immunology | 2001

A dual-function DNA vaccine encoding carcinoembryonic antigen and CD40 ligand trimer induces T cell-mediated protective immunity against colon cancer in carcinoembryonic antigen-transgenic mice.

Rong Xiang; F. James Primus; J. Michael Ruehlmann; Andreas G. Niethammer; Steve Silletti; Holger N. Lode; Carrie S. Dolman; Stephen D. Gillies; Ralph A. Reisfeld

A carcinoembryonic Ag (CEA)-based DNA vaccine encoding both CEA and CD40 ligand trimer achieved effective tumor-protective immunity against murine colon carcinoma in CEA-transgenic mice by activating both naive T cells and dendritic cells. Peripheral T cell tolerance to CEA was broken in a prophylactic model by this novel, dual-function DNA vaccine, whose efficacy was further enhanced by boosts with a recombinant Ab-IL-2 fusion protein (huKS1/4-IL-2). These conclusions are supported by four lines of evidence. First, a lethal challenge of MC38-CEA-KS Ag murine colon carcinoma cells was for the first time completely rejected in 100% of experimental animals treated by oral gavage of this DNA vaccine carried by attenuated Salmonella typhimurium, followed by five boosts with huKS1/4-IL-2. Second, specific activation of dendritic cells was indicated by their marked up-regulation in expression of costimulatory molecules B7.1 (CD80), B7.2 (CD86), and ICAM-1. Third, a decisive increase over control values was observed in both MHC class I Ag-restricted cytotoxicity of CTLs from successfully vaccinated mice and secretion of proinflammatory cytokines IFN-γ and IL-12. Fourth, activation of CTLs was augmented, as indicated by up-regulation of activity markers LFA-1, CD25, CD28, and CD69. Taken together, these results suggest that a dual-function DNA vaccine encoding CEA and CD40 ligand trimer combined with tumor-targeted IL-2 may be a promising strategy for the rational development of DNA-based cancer vaccines for future clinical applications.


PLOS ONE | 2012

Inhibition of neuroblastoma tumor growth by targeted delivery of microRNA-34a using anti-disialoganglioside GD2 coated nanoparticles.

Amanda Tivnan; Wayne S. Orr; Vladimir Gubala; Robert Nooney; David E. Williams; Colette McDonagh; Suzanne Prenter; Harry Harvey; Raquel Domingo-Fernández; Isabella Bray; Olga Piskareva; Catherine Y.C. Ng; Holger N. Lode; Andrew M. Davidoff; Raymond L. Stallings

Background Neuroblastoma is one of the most challenging malignancies of childhood, being associated with the highest death rate in paediatric oncology, underlining the need for novel therapeutic approaches. Typically, patients with high risk disease undergo an initial remission in response to treatment, followed by disease recurrence that has become refractory to further treatment. Here, we demonstrate the first silica nanoparticle-based targeted delivery of a tumor suppressive, pro-apoptotic microRNA, miR-34a, to neuroblastoma tumors in a murine orthotopic xenograft model. These tumors express high levels of the cell surface antigen disialoganglioside GD2 (GD2), providing a target for tumor-specific delivery. Principal Findings Nanoparticles encapsulating miR-34a and conjugated to a GD2 antibody facilitated tumor-specific delivery following systemic administration into tumor bearing mice, resulted in significantly decreased tumor growth, increased apoptosis and a reduction in vascularisation. We further demonstrate a novel, multi-step molecular mechanism by which miR-34a leads to increased levels of the tissue inhibitor metallopeptidase 2 precursor (TIMP2) protein, accounting for the highly reduced vascularisation noted in miR-34a-treated tumors. Significance These novel findings highlight the potential of anti-GD2-nanoparticle-mediated targeted delivery of miR-34a for both the treatment of GD2-expressing tumors, and as a basic discovery tool for elucidating biological effects of novel miRNAs on tumor growth.


Journal of Immunology | 2001

IFN-γ-Inducible Protein-10 Is Essential for the Generation of a Protective Tumor-Specific CD8 T Cell Response Induced by Single-Chain IL-12 Gene Therapy

Ursula Pertl; Andrew D. Luster; Nissi M. Varki; Dirk Homann; Gerhard Gaedicke; Ralph A. Reisfeld; Holger N. Lode

The successful induction of T cell-mediated protective immunity against poorly immunogenic malignancies remains a major challenge for cancer immunotherapy. Here, we demonstrate that the induction of tumor-protective immunity by IL-12 in a murine neuroblastoma model depends entirely on the CXC chemokine IFN-γ-inducible protein 10 (IP-10). This was established by in vivo depletion of IP-10 with mAbs in mice vaccinated against NXS2 neuroblastoma by gene therapy with a linearized, single-chain (sc) version of the heterodimeric cytokine IL-12 (scIL-12). The efficacy of IP-10 depletion was indicated by the effective abrogation of scIL-12-mediated antiangiogenesis and T cell chemotaxis in mice receiving s.c. injections of scIL-12-producing NXS2 cells. These findings were extended by data demonstrating that IP-10 is directly involved in the generation of a tumor-protective CD8+ T cell-mediated immune response during the early immunization phase. Four lines of evidence support this contention: First, A/J mice vaccinated with NXS2 scIL-12 and depleted of IP-10 by two different anti-IP-10 mAbs revealed an abrogation of systemic-protective immunity against disseminated metastases. Second, CD8+ T cell-mediated MHC class I Ag-restricted tumor cell lysis was inhibited in such mice. Third, intracellular IFN-γ expressed by proliferating CD8+ T cells was substantially inhibited in IP-10-depleted, scIL-12 NXS2-vaccinated mice. Fourth, systemic tumor protective immunity was completely abrogated in mice depleted of IP-10 in the early immunization phase, but not if IP-10 was depleted only in the effector phase. These findings suggest that IP-10 plays a crucial role during the early immunization phase in the induction of immunity against neuroblastoma by scIL-12 gene therapy.


Pharmacology & Therapeutics | 1998

Immunocytokines: a promising approach to cancer immunotherapy.

Holger N. Lode; Rong Xiang; Jürgen C. Becker; Stephen D. Gillies; Ralph A. Reisfeld

Recombinant antibody-cytokine fusion proteins are immunocytokines that achieve high cytokine concentrations in the tumor microenvironment and thereby effectively stimulate cellular immune responses against malignancies. The activation and expansion of immune effector cells, such as CD8+ T lymphocytes, by interleukin-2 immunocytokines resulted in the eradication of established pulmonary and hepatic metastases of murine melanoma and colorectal carcinoma in syngeneic mouse models. These immunocytokines were equally effective in eliminating established bone marrow and liver metastases of murine neuroblastoma by activating natural killer cells. The effective eradication of metastases by immunocytokines resulted in significant prolongation in life span of mice over that of controls receiving equivalent mixtures of antibody and interleukin-2, which failed to reduce the growth of disseminated metastases. Proof of concept was established, indicating that immunocytokine-induced activation and expansion of immune effector cells in the tumor microenvironment can effectively eradicate established tumor metastases. This promising new approach to cancer immunotherapy may lead to clinical applications that improve treatment of cancer patients with minimal residual disease in an adjuvant setting.


Journal of Cellular and Molecular Medicine | 2012

NK cells engineered to express a GD2 -specific antigen receptor display built-in ADCC-like activity against tumour cells of neuroectodermal origin.

Ruth Esser; Tina Müller; Dörthe Stefes; Stephan Kloess; Diana Seidel; Stephen D. Gillies; Christel Aperlo-Iffland; James S. Huston; Christoph Uherek; Kurt Schönfeld; Torsten Tonn; Nicole Huebener; Holger N. Lode; Ulrike Koehl; Winfried S. Wels

Treatment of high‐risk neuroblastoma (NB) represents a major challenge in paediatric oncology. Alternative therapeutic strategies include antibodies targeting the disialoganglioside GD2, which is expressed at high levels on NB cells, and infusion of donor‐derived natural killer (NK) cells. To combine specific antibody‐mediated recognition of NB cells with the potent cytotoxic activity of NK cells, here we generated clonal derivatives of the clinically applicable human NK cell line NK‐92 that stably express a GD2‐specific chimeric antigen receptor (CAR) comprising an anti‐GD2 ch14.18 single chain Fv antibody fusion protein with CD3‐ζ chain as a signalling moiety. CAR expression by gene‐modified NK cells facilitated effective recognition and elimination of established GD2 expressing NB cells, which were resistant to parental NK‐92. In the case of intrinsically NK‐sensitive NB cell lines, we observed markedly increased cell killing activity of retargeted NK‐92 cells. Enhanced cell killing was strictly dependent on specific recognition of the target antigen and could be blocked by GD2‐specific antibody or anti‐idiotypic antibody occupying the CAR’s cell recognition domain. Importantly, strongly enhanced cytotoxicity of the GD2‐specific NK cells was also found against primary NB cells and GD2 expressing tumour cells of other origins, demonstrating the potential clinical utility of the retargeted effector cells.


Nature Genetics | 2015

Mutational dynamics between primary and relapse neuroblastomas

Alexander Schramm; Johannes Köster; Yassen Assenov; Kristina Althoff; Martin Peifer; Ellen Mahlow; Andrea Odersky; Daniela Beisser; Corinna Ernst; Anton Henssen; Harald Stephan; Christopher Schröder; Lukas C. Heukamp; Anne Engesser; Yvonne Kahlert; Jessica Theissen; Barbara Hero; Frederik Roels; Janine Altmüller; Peter Nürnberg; Kathy Astrahantseff; Christian Gloeckner; Katleen De Preter; Christoph Plass; Sangkyun Lee; Holger N. Lode; Kai Oliver Henrich; Moritz Gartlgruber; Frank Speleman; Peter Schmezer

Neuroblastoma is a malignancy of the developing sympathetic nervous system that is often lethal when relapse occurs. We here used whole-exome sequencing, mRNA expression profiling, array CGH and DNA methylation analysis to characterize 16 paired samples at diagnosis and relapse from individuals with neuroblastoma. The mutational burden significantly increased in relapsing tumors, accompanied by altered mutational signatures and reduced subclonal heterogeneity. Global allele frequencies at relapse indicated clonal mutation selection during disease progression. Promoter methylation patterns were consistent over disease course and were patient specific. Recurrent alterations at relapse included mutations in the putative CHD5 neuroblastoma tumor suppressor, chromosome 9p losses, DOCK8 mutations, inactivating mutations in PTPN14 and a relapse-specific activity pattern for the PTPN14 target YAP. Recurrent new mutations in HRAS, KRAS and genes mediating cell-cell interaction in 13 of 16 relapse tumors indicate disturbances in signaling pathways mediating mesenchymal transition. Our data shed light on genetic alteration frequency, identity and evolution in neuroblastoma.


Proceedings of the National Academy of Sciences of the United States of America | 2001

In vivo activity in a catalytic antibody-prodrug system: Antibody catalyzed etoposide prodrug activation for selective chemotherapy

Doron Shabat; Holger N. Lode; Ursula Pertl; Ralph A. Reisfeld; Christoph Rader; Richard A. Lerner; Carlos F. Barbas

Effective chemotherapy remains a key issue for successful cancer treatment in general and neuroblastoma in particular. Here we report a chemotherapeutic strategy based on catalytic antibody-mediated prodrug activation. To study this approach in an animal model of neuroblastoma, we have synthesized prodrugs of etoposide, a drug widely used to treat this cancer in humans. The prodrug incorporates a trigger portion designed to be released by sequential retro-aldol/retro-Michael reactions catalyzed by aldolase antibody 38C2. This unique prodrug was greater than 102-fold less toxic than etoposide itself in in vitro assays against the NXS2 neuroblastoma cell line. Drug activity was restored after activation by antibody 38C2. Proof of principle for local antibody-catalyzed prodrug activation in vivo was established in a syngeneic model of murine neuroblastoma. Mice with established 100-mm3 s.c. tumors who received one intratumoral injection of antibody 38C2 followed by systemic i.p. injections with the etoposide prodrug showed a 75% reduction in s.c. tumor growth. In contrast, injection of either antibody or prodrug alone had no antitumor effect. Systemic injections of etoposide at the maximum tolerated dose were significantly less effective than the intratumoral antibody 38C2 and systemic etoposide prodrug combination. Significantly, mice treated with the prodrug at 30-fold the maximum tolerated dose of etoposide showed no signs of prodrug toxicity, indicating that the prodrug is not activated by endogenous enzymes. These results suggest that this strategy may provide a new and potentially nonimmunogenic approach for targeted cancer chemotherapy.


Clinical Cancer Research | 2004

Enhanced activity of hu14.18-IL2 immunocytokine against murine NXS2 neuroblastoma when combined with interleukin 2 therapy.

Zane C. Neal; Jeannie C. Yang; Alexander L. Rakhmilevich; Ilia N. Buhtoiarov; Hillary E. Lum; Michael Imboden; Jacquelyn A. Hank; Holger N. Lode; Ralph A. Reisfeld; Stephen D. Gillies; Paul M. Sondel

Established s.c. NXS2 murine neuroblastoma tumors exhibited transient resolution after suboptimal therapy using the hu14.18-IL2 immunocytokine (IC). The hu14.18-IL2 IC is a fusion protein that has linked a molecule of interleukin 2 (IL-2) to the COOH terminus of each of the IgG heavy chains on the humanized anti-GD2 monoclonal antibody hu14.18. To induce more potent and longer lasting in vivo antitumor effects, we tested hu14.18-IL2 IC in a regimen combining it with constant infusion IL-2 in NXS2 tumor-bearing mice. The addition of the constant infusion IL-2 augmented the antitumor response induced by treatment with the hu14.18-IL2 IC in animals with experimentally induced hepatic metastases and in animals bearing localized s.c. tumors. The combined treatment induced prolonged tumor eradication in most animals bearing s.c. tumors and involved both natural killer cells and T cells. The enhanced ability of this combined treatment to prevent tumor recurrence was not observed when a larger dose of hu14.18-IL2 IC, similar in IL-2 content to the IC plus systemic IL-2 regimen, was tested as single-agent therapy. Animals showing prolonged tumor eradication of established tumors after the combined hu14.18-IL2 plus IL-2 regimen exhibited a protective T-cell-dependent antitumor memory response against NXS2 rechallenge.


Cancer Letters | 2008

Molecular mechanisms of mistletoe plant extract-induced apoptosis in acute lymphoblastic leukemia in vivo and in vitro

Georg Seifert; Patrick Jesse; Alfred Laengler; Tobias Reindl; Maria Lüth; Stephan Lobitz; Günter Henze; Aram Prokop; Holger N. Lode

Viscum album (Mistletoe) is one of the most widely used alternative cancer therapies. Aqueous mistletoe extracts (MT) contain the three mistletoe lectins I, II and III as one predominant group of biologically active agents. Although MT is widely used, there is a lack of scientifically sound preclinical and clinical data. In this paper, we describe for the first time the in vivo efficacy and mechanism of action of MT in lymphoblastic leukemia. For this purpose, we first investigated both the cytotoxic effect and the mechanism of action of two standardized aqueous MTs (MT obtained from fir trees (MT-A); MT obtained from pine trees (MT-P)) in a human acute lymphoblastic leukemia (ALL) cell line (NALM-6). MT-A, MT-P and ML-I inhibited cell proliferation as determined by Casy Count analysis at very low concentrations with MT-P being the most cytotoxic extract. DNA-fragmentation assays indicated that dose-dependent induction of apoptosis was the main mechanism of cell death. Finally, we evaluated the efficacy of MT-A and MT-P in an in vivo SCID-model of pre-B ALL (NALM-6). Both MTs significantly improved survival (up to 55.4 days) at all tested concentrations in contrast to controls (34.6 days) without side effects.


European Journal of Cancer | 1997

Detection of neuroblastoma cells in CD34+ selected peripheral stem cells using a combination of tyrosine hydroxylase nested RT-PCR and anti-ganglioside GD2 immunocytochemistry.

Holger N. Lode; Rupert Handgretinger; U Schuermann; G. Seitz; Thomas Klingebiel; Dietrich Niethammer; James F. Beck

A sensitive assay was developed for the detection of neuroblastoma cell contamination in CD34+ selected and unseparated peripheral blood stem cells (PBSC) used for autologous transplantation in stage 4 neuroblastoma patients. Specifically, we established a non-radioactive nested cDNA-PCR (nPCR) for detection of tyrosine hydroxylase (TH) gene expression combined with anti-disialoganglioside GD2 immunocytochemistry with the murine monoclonal antibody (MAb) 14G2a. Sensitivities of TH nPCR determined with a number of neuroblastoma cell lines and PBSCs correlated to cell line dependent basal TH gene expression levels and ranged from 1:10(4) to 1:10(6). The sensitivity obtained by immunocytochemistry was 1:10(5). We observed the highest PBSC contamination rate of 47% (18/38) among 38 PBSC specimens exclusively obtained from stage 4 neuroblastoma patients by using TH nPCR and GD2 immunocytochemistry in combination. Furthermore, a clinically applied purging method, CD34+ selection by immunoabsorption (CD34+ purity 42.4%), was used on 16 PBSCs. 10/16 (63%) preparations were contaminated prior to CD34+ selection and 56% (9/16) remained contaminated. A significant reduction of neuroblastoma cell contamination by CD34+ selection was not detectable, but the absolute amount of re-infused tumour cells was decreased due to 100-fold smaller cell counts of CD34+ selected grafts used for transplantation. 22 PBSC preparations were used for transplantation. A Kaplan-Meier analysis showed an event-free survival probability of 0.56 +/- 0.22 (n = 9) in the group with contaminated PBSCs versus 0.88 +/- 0.12 (n = 8) with no detectable neuroblastoma-cell contamination. Our data suggest that the combined use of TH nPCR and GD2 immunocytochemistry is optimal to detect contamination and monitor purging strategies.

Collaboration


Dive into the Holger N. Lode's collaboration.

Top Co-Authors

Avatar

Ralph A. Reisfeld

Scripps Research Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ruth Ladenstein

Boston Children's Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gerhard Gaedicke

Boston Children's Hospital

View shared research outputs
Top Co-Authors

Avatar

Nicole Huebener

Boston Children's Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Stefan Fest

Otto-von-Guericke University Magdeburg

View shared research outputs
Top Co-Authors

Avatar

Karoline Ehlert

Boston Children's Hospital

View shared research outputs
Top Co-Authors

Avatar

Nicole Huebener

Boston Children's Hospital

View shared research outputs
Researchain Logo
Decentralizing Knowledge