Holger Römpler
Leipzig University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Holger Römpler.
Science | 2007
Carles Lalueza-Fox; Holger Römpler; David Caramelli; Claudia Stäubert; Giulio Catalano; David A. Hughes; Nadin Rohland; Elena Pilli; Laura Longo; Silvana Condemi; Marco de la Rasilla; Javier Fortea; Antonio Rosas; Mark Stoneking; Torsten Schöneberg; Jaume Bertranpetit; Michael Hofreiter
The melanocortin 1 receptor (MC1R) regulates pigmentation in humans and other vertebrates. Variants of MC1R with reduced function are associated with pale skin color and red hair in humans of primarily European origin. We amplified and sequenced a fragment of the MC1R gene (mc1r) from two Neanderthal remains. Both specimens have a mutation that was not found in ∼3700 modern humans analyzed. Functional analyses show that this variant reduces MC1R activity to a level that alters hair and/or skin pigmentation in humans. The impaired activity of this variant suggests that Neanderthals varied in pigmentation levels, potentially on the scale observed in modern humans. Our data suggest that inactive MC1R variants evolved independently in both modern humans and Neanderthals.
Proceedings of the National Academy of Sciences of the United States of America | 2010
Erica Bree Rosenblum; Holger Römpler; Torsten Schöneberg; Hopi E. Hoekstra
There are many striking examples of phenotypic convergence in nature, in some cases associated with changes in the same genes. But even mutations in the same gene may have different biochemical properties and thus different evolutionary consequences. Here we dissect the molecular mechanism of convergent evolution in three lizard species with blanched coloration on the gypsum dunes of White Sands, New Mexico. These White Sands forms have rapidly evolved cryptic coloration in the last few thousand years, presumably to avoid predation. We use cell-based assays to demonstrate that independent mutations in the same gene underlie the convergent blanched phenotypes in two of the three species. Although the same gene contributes to light phenotypes in these White Sands populations, the specific molecular mechanisms leading to reduced melanin production are different. In one case, mutations affect receptor signaling and in the other, the ability of the receptor to integrate into the melanocyte membrane. These functional differences have important ramifications at the organismal level. Derived alleles in the two species show opposite dominance patterns, which in turn affect their visibility to selection and the spatial distribution of alleles across habitats. Our results demonstrate that even when the same gene is responsible for phenotypic convergence, differences in molecular mechanism can have dramatic consequences on trait expression and ultimately the adaptive trajectory.
Science | 2006
Holger Römpler; Nadin Rohland; Carles Lalueza-Fox; T. A. Kuznetsova; Gernot Rabeder; Jaume Bertranpetit; Torsten Schöneberg; Michael Hofreiter
By amplifying the melanocortin type 1 receptor from the woolly mammoth, we can report the complete nucleotide sequence of a nuclear-encoded gene from an extinct species. We found two alleles and show that one allele produces a functional protein whereas the other one encodes a protein with strongly reduced activity. This finding suggests that mammoths may have been polymorphic in coat color, with both dark- and light-haired individuals co-occurring.
Hormones and Behavior | 2008
Frank W. Albert; Olesya Shchepina; Christine Winter; Holger Römpler; Daniel Teupser; Rupert Palme; Uta Ceglarek; Jürgen Kratzsch; Reinhard Sohr; Lyudmila N. Trut; Joachim Thiery; Rudolf Morgenstern; I. Z. Plyusnina; Torsten Schöneberg; Svante Pääbo
To better understand the biology of tameness, i.e. tolerance of human presence and handling, we analyzed two lines of wild-derived rats (Rattus norvegicus) artificially selected for tameness and defensive aggression towards humans. In response to a gloved human hand, tame rats tolerated handling, whereas aggressive rats attacked. Cross-fostering showed that these behavioral differences are not caused by postnatal maternal effects. Tame rats were more active and explorative and exhibited fewer anxiety-related behaviors. They also had smaller adrenal glands, larger spleens and lower levels of serum corticosterone. Blood glucose levels were lower in tame rats, whereas the concentrations of nine amino acids were higher. In the brain, tame rats had lower serotonin and higher taurine levels than aggressive rats. Our findings reinforce the notion that tameness is correlated with differences in stress response and will facilitate future efforts to uncover the genetic basis for animal tameness.
Nature Protocols | 2006
Holger Römpler; Paul H. Dear; Johannes Krause; Matthias Meyer; Nadin Rohland; Torsten Schöneberg; Helen Spriggs; Mathias Stiller; Michael Hofreiter
This method is designed to assemble long, continuous DNA sequences using minimal amounts of fragmented ancient DNA as template. This is achieved by a two-step approach. In the first step, multiple fragments are simultaneously amplified in a single multiplex reaction. Subsequently, each of the generated fragments is amplified individually using a single primer pair, in a standard simplex (monoplex) PCR. The ability to amplify multiple fragments simultaneously in the first step allows the generation of large amounts of sequence from rare template DNA, whereas the second nested step increases specificity and decreases amplification of contaminating DNA. In contrast to current protocols using many template-consuming simplex PCRs, the method described allows amplification of several kilobases of sequence in just one reaction. It thus combines optimal template usage with a high specificity and can be performed within a day.
Journal of Biological Chemistry | 2007
Nicole Merten; Diana Lindner; Nadine Rabe; Holger Römpler; Karin Mörl; Torsten Schöneberg; Annette G. Beck-Sickinger
Y receptors (YRs) are G protein-coupled receptors whose Y1R, Y2R, and Y5R subtypes preferentially bind neuropeptide Y (NPY) and peptide YY, whereas mammalian Y4Rs show a higher affinity for pancreatic polypeptide (PP). Comparison of YR orthologs and paralogs revealed Asp6.59 to be fully conserved throughout all of the YRs reported so far. By replacing this conserved aspartic acid residue with alanine, asparagine, glutamate, and arginine, we now show that this residue plays a crucial role in binding and signal transduction of NPY/PP at all YRs. Sensitivity to distinct replacements is, however, receptor subtype-specific. Next, we performed a complementary mutagenesis approach to identify the contact site of the ligand. Surprisingly, this conserved residue interacts with two different ligand arginine residues by ionic interactions; although in Y2R and Y5R, Arg33 is the binding partner of Asp6.59, in Y1R and Y4R, Arg35 of human PP and NPY interacts with Asp6.59. Furthermore, Arg25 of PP and NPY is involved in ligand binding only at Y2R and Y5R. This suggests significant differences in the docking of YR ligands between Y1/4R and Y2/5R and provides new insights into the molecular binding mode of peptide agonists at GPCRs. Furthermore, the proposed model of a subtype-specific binding mode is in agreement with the evolution of YRs.
PLOS ONE | 2010
Claudia Stäubert; Iris Böselt; Jens Bohnekamp; Holger Römpler; Wolfgang Enard; Torsten Schöneberg
The family of trace amine-associated receptors (TAAR) comprises 9 mammalian TAAR subtypes, with intact gene and pseudogene numbers differing considerably even between closely related species. To date the best characterized subtype is TAAR1, which activates the Gs protein/adenylyl cyclase pathway upon stimulation by trace amines and psychoactive substances like MDMA or LSD. Recently, chemosensory function involving recognition of volatile amines was proposed for murine TAAR3, TAAR4 and TAAR5. Humans can smell volatile amines despite carrying open reading frame (ORF) disruptions in TAAR3 and TAAR4. Therefore, we set out to study the functional and structural evolution of these genes with a special focus on primates. Functional analyses showed that ligands activating the murine TAAR3, TAAR4 and TAAR5 do not activate intact primate and mammalian orthologs, although they evolve under purifying selection and hence must be functional. We also find little evidence for positive selection that could explain the functional differences between mouse and other mammals. Our findings rather suggest that the previously identified volatile amine TAAR3–5 agonists reflect the high agonist promiscuity of TAAR, and that the ligands driving purifying selection of these TAAR in mouse and other mammals still await discovery. More generally, our study points out how analyses in an evolutionary context can help to interpret functional data generated in single species.
PLOS ONE | 2009
Iris Böselt; Holger Römpler; Thomas Hermsdorf; Doreen Thor; Wibke Busch; Angela Schulz; Torsten Schöneberg
Mammals adapted to a great variety of habitats with different accessibility to water. In addition to changes in kidney morphology, e.g. the length of the loops of Henle, several hormone systems are involved in adaptation to limited water supply, among them the renal-neurohypophysial vasopressin/vasopressin receptor system. Comparison of over 80 mammalian V2 vasopressin receptor (V2R) orthologs revealed high structural and functional conservation of this key component involved in renal water reabsorption. Although many mammalian species have unlimited access to water there is no evidence for complete loss of V2R function indicating an essential role of V2R activity for survival even of those species. In contrast, several marsupial V2R orthologs show a significant increase in basal receptor activity. An increased vasopressin-independent V2R activity can be interpreted as a shift in the set point of the renal-neurohypophysial hormone circuit to realize sufficient water reabsorption already at low hormone levels. As found in other desert mammals arid-adapted marsupials show high urine osmolalities. The gain of basal V2R function in several marsupials may contribute to the increased urine concentration abilities and, therefore, provide an advantage to maintain water and electrolyte homeostasis under limited water supply conditions.
Biochemical Journal | 2012
Lars Ritscher; Eva Engemaier; Claudia Stäubert; Ines Liebscher; Philipp Schmidt; Thomas Hermsdorf; Holger Römpler; Angela Schulz; Torsten Schöneberg
Lyso-PS (lyso-phosphatidylserine) has been shown to activate the G(i/o)-protein-coupled receptor GPR34. Since in vitro and in vivo studies provided controversial results in assigning lyso-PS as the endogenous agonist for GPR34, we investigated the evolutionary conservation of agonist specificity in more detail. Except for some fish GPR34 subtypes, lyso-PS has no or very weak agonistic activity at most vertebrate GPR34 orthologues investigated. Using chimaeras we identified single positions in the second extracellular loop and the transmembrane helix 5 of carp subtype 2a that, if transferred to the human orthologue, enabled lyso-PS to activate the human GPR34. Significant improvement of agonist efficacy by changing only a few positions strongly argues against the hypothesis that nature optimized GPR34 as the receptor for lyso-PS. Phylogenetic analysis revealed several positions in some fish GPR34 orthologues which are under positive selection. These structural changes may indicate functional specification of these orthologues which can explain the species- and subtype-specific pharmacology of lyso-PS. Furthermore, we identified aminoethyl-carbamoyl ATP as an antagonist of carp GPR34, indicating ligand promiscuity with non-lipid compounds. The results of the present study suggest that lyso-PS has only a random agonistic activity at some GPR34 orthologues and the search for the endogenous agonist should consider additional chemical entities.
Purinergic Signalling | 2007
Torsten Schöneberg; Thomas Hermsdorf; Eva Engemaier; Kathrin M. Engel; Ines Liebscher; Doreen Thor; Klaas Zierau; Holger Römpler; Angela Schulz
Metabotropic pyrimidine and purine nucleotide receptors (P2Y receptors) belong to the superfamily of G protein-coupled receptors (GPCR). They are distinguishable from adenosine receptors (P1) as they bind adenine and/or uracil nucleotide triphosphates or diphosphates depending on the subtype. Over the past decade, P2Y receptors have been cloned from a variety of tissues and species, and as many as eight functional subtypes have been characterized. Most recently, several members of the P2Y12-like receptor group, which includes the clopidogrel-sensitive ADP receptor P2Y12, have been deorphanized. The P2Y12-like receptor group comprises several structurally related GPCR which, however, display heterogeneous agonist specificity including nucleotides, their derivatives, and lipids. Besides the established function of P2Y12 in platelet activation, expression in macrophages, neuronal and glial cells as well as recent results from functional studies implicate that several members of this group may have specific functions in neurotransmission, inflammation, chemotaxis, and response to tissue injury. This review focuses specifically on the structure-function relation and shortly summarizes some aspects of the physiological relevance of P2Y12-like receptor members.