Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Holland C. Ford is active.

Publication


Featured researches published by Holland C. Ford.


The Astrophysical Journal | 2001

Final Results from the Hubble Space Telescope Key Project to Measure the Hubble Constant

Wendy L. Freedman; Barry F. Madore; Brad K. Gibson; Laura Ferrarese; Daniel D. Kelson; Shoko Sakai; Jeremy R. Mould; Robert C. Kennicutt; Holland C. Ford; John A. Graham; John P. Huchra; Shaun M. G. Hughes; Garth D. Illingworth; Lucas M. Macri; Peter B. Stetson

We present here the final results of the Hubble Space Telescope (HST) Key Project to measure the Hubble constant. We summarize our method, the results, and the uncertainties, tabulate our revised distances, and give the implications of these results for cosmology. Our results are based on a Cepheid calibration of several secondary distance methods applied over the range of about 60-400 Mpc. The analysis presented here benefits from a number of recent improvements and refinements, including (1) a larger LMC Cepheid sample to define the fiducial period-luminosity (PL) relations, (2) a more recent HST Wide Field and Planetary Camera 2 (WFPC2) photometric calibration, (3) a correction for Cepheid metallicity, and (4) a correction for incompleteness bias in the observed Cepheid PL samples. We adopt a distance modulus to the LMC (relative to which the more distant galaxies are measured) of μ0 = 18.50 ± 0.10 mag, or 50 kpc. New, revised distances are given for the 18 spiral galaxies for which Cepheids have been discovered as part of the Key Project, as well as for 13 additional galaxies with published Cepheid data. The new calibration results in a Cepheid distance to NGC 4258 in better agreement with the maser distance to this galaxy. Based on these revised Cepheid distances, we find values (in km s-1 Mpc-1) of H0 = 71 ± 2 ± 6 (systematic) (Type Ia supernovae), H0 = 71 ± 3 ± 7 (Tully-Fisher relation), H0 = 70 ± 5 ± 6 (surface brightness fluctuations), H0 = 72 ± 9 ± 7 (Type II supernovae), and H0 = 82 ± 6 ± 9 (fundamental plane). We combine these results for the different methods with three different weighting schemes, and find good agreement and consistency with H0 = 72 ± 8 km s-1 Mpc-1. Finally, we compare these results with other, global methods for measuring H0.


Publications of the Astronomical Society of the Pacific | 2005

The Photometric Performance and Calibration of the Hubble Space Telescope Advanced Camera for Surveys

Marco Sirianni; M. J. Jee; N. Benítez; John P. Blakeslee; Andre R. Martel; Gerhardt R. Meurer; M. Clampin; G. De Marchi; Holland C. Ford; Ronald L. Gilliland; George F. Hartig; Garth D. Illingworth; Jennifer Mack; Wm. J. McCann

ABSTRACT We present the photometric calibration of the Advanced Camera for Surveys (ACS). The ACS was installed in the Hubble Space Telescope (HST) in 2002 March. It comprises three cameras: the Wide Field Channel (WFC), optimized for deep near‐IR survey imaging programs; the High Resolution Channel (HRC), a high‐resolution imager that fully samples the HST point‐spread function (PSF) in the visible; and the Solar Blind Channel (SBC), a far‐UV imager. A significant amount of data has been collected to characterize the on‐orbit performance of the three channels. We give here an overview of the performance and calibration of the two CCD cameras (WFC and HRC) and a description of the best techniques for reducing ACS CCD data. The overall performance is as expected from prelaunch testing of the camera. Surprises were a better‐than‐predicted sensitivity in the visible and near‐IR for both the WFC and HRC and an unpredicted dip in the HRC UV response at ∼3200 A. On‐orbit observations of spectrophotometric stand...


The Astrophysical Journal | 2007

UV Luminosity Functions at z~4, 5, and 6 from the Hubble Ultra Deep Field and Other Deep Hubble Space Telescope ACS Fields: Evolution and Star Formation History*

R. J. Bouwens; Garth D. Illingworth; Marijn Franx; Holland C. Ford

We use the ACS BViz data from the HUDF and all other deep HST ACS fields (including the GOODS fields) to find large samples of star-forming galaxies at z ~ 4 and ~5 and to extend our previous z ~ 6 sample. These samples contain 4671, 1416, and 627 B-, V-, and i-dropouts, respectively, and reach to extremely low luminosities [(0.01-0.04)L or MUV ~ -16 to -17], allowing us to determine the rest-frame UV LF and faint-end slope ? at z ~ 4-6 to high accuracy. We find faint-end slopes ? = -1.73 ? 0.05, -1.66 ? 0.09, and -1.74 ? 0.16 at z ~ 4, ~5, and ~6, respectively, suggesting that the faint-end slope is very steep and shows little evolution with cosmic time. We find that M brightens considerably in the 0.7 Gyr from z ~ 6 to ~4 (by ~0.7 mag from M = -20.24 ? 0.19 to -20.98 ? 0.10). The observed increase in the characteristic luminosity over this range is almost identical to that expected for the halo mass function, suggesting that the observed evolution is likely due to the hierarchical coalescence and merging of galaxies. The evolution in * is not significant. The UV luminosity density at z ~ 6 is modestly lower than (0.45 ? 0.09 times) that at z ~ 4 (integrated to -17.5 mag) although a larger change is seen in the dust-corrected SFR density. We thoroughly examine published LF results and assess the reasons for their wide dispersion. We argue that the results reported here are the most robust available. The extremely steep faint-end slopes ? found here suggest that lower luminosity galaxies play a significant role in reionizing the universe. Finally, recent search results for galaxies at z ~ 7-8 are used to extend our estimates of the evolution of M* from z ~ 7-8 to z ~ 4.


Space Science Reviews | 2005

Supermassive Black Holes in Galactic Nuclei: Past, Present and Future Research

Laura Ferrarese; Holland C. Ford

This review discusses the current status of supermassive black hole research, as seen from a purely observational standpoint. Since the early ‘90s, rapid technological advances, most notably the launch of the Hubble Space Telescope, the commissioning of the VLBA and improvements in near-infrared speckle imaging techniques, have not only given us incontrovertible proof of the existence of supermassive black holes, but have unveiled fundamental connections between the mass of the central singularity and the global properties of the host galaxy. It is thanks to these observations that we are now, for the first time, in a position to understand the origin, evolution and cosmic relevance of these fascinating objects.


The Astrophysical Journal | 1994

The Hubble Space Telescope Extragalactic Distance Scale Key Project. 1: The discovery of Cepheids and a new distance to M81

Wendy L. Freedman; Shaun M. G. Hughes; Barry F. Madore; Jeremy R. Mould; Myung Gyoon Lee; Peter B. Stetson; Robert C. Kennicutt; Anne Marie Turner; Laura Ferrarese; Holland C. Ford

We report on the discovery of 30 new Cepheids in the nearby galaxy M81 based on observations using the Hubble Space Telescope (HST). The periods of these Cepheids lie in the range of 10-55 days, based on 18 independent epochs using the HST wide-band F555W filter. The HST F555W and F785LP data have been transformed to the Cousins standard V and I magnitude system using a ground-based calibration. Apparent period-luminosity relations at V and I were constructed, from which apparent distance moduli were measured with respect to assumed values of mu(sub 0) = 18.50 mag and E(B - V) = 0.10 mag for the Large Magellanic Cloud. The difference in the apparent V and I moduli yields a measure of the difference in the total mean extinction between the M81 and the LMC Cepheid samples. A low total mean extinction to the M81 sample of E(B - V) = 0.03 +/- 0.05 mag is obtained. The true distance modulus to M81 is determined to be 27.80 +/- 0.20 mag, corresponding to a distance of 3.63 +/- 0.34 Mpc. These data illustrate that with an optimal (power-law) sampling strategy, the HST provides a powerful tool for the discovery of extragalactic Cepheids and their application to the distance scale. M81 is the first calibrating galaxy in the target sample of the HST Key Project on the Extragalactic Distance Scale, the ultimate aim of which is to provide a value of the Hubble constant to 10% accuracy.


The Astrophysical Journal | 2000

The Hubble Space Telescope Key Project on the Extragalactic Distance Scale. XXVIII. Combining the Constraints on the Hubble Constant

Jeremy R. Mould; John P. Huchra; Wendy L. Freedman; Robert C. Kennicutt; Laura Ferrarese; Holland C. Ford; Brad K. Gibson; John A. Graham; Shaun M. G. Hughes; Garth D. Illingworth; Daniel D. Kelson; Lucas M. Macri; Barry F. Madore; Shoko Sakai; Kim M. Sebo; Nancy Ann Silbermann; Peter B. Stetson

Since the launch of the Hubble Space Telescope nine years ago, Cepheid distances to 25 galaxies have been determined for the purpose of calibrating secondary distance indicators. A variety of these can now be calibrated, and the accompanying papers by Sakai, Kelson, Ferrarese, and Gibson employ the full set of 25 galaxies to consider the Tully-Fisher relation, the fundamental plane of elliptical galaxies, Type Ia supernovae, and surface brightness fluctuations. When calibrated with Cepheid distances, each of these methods yields a measurement of the Hubble constant and a corresponding measurement uncertainty. We combine these measurements in this paper, together with a model of the velocity field, to yield the best available estimate of the value of H_0 within the range of these secondary distance indicators and its uncertainty. The result is H_0 = 71 +/- 6 km/sec/Mpc. The largest contributor to the uncertainty of this 67% confidence level result is the distance of the Large Magellanic Cloud, which has been assumed to be 50 +/- 3 kpc.


The Astrophysical Journal | 2005

The Morphology-Density Relation in z ~ 1 Clusters

Marc Postman; Marijn Franx; N. J. G. Cross; B. Holden; Holland C. Ford; G. D. Illingworth; Tomotsugu Goto; R. Demarco; P. Rosati; John P. Blakeslee; K.-V. Tran; N. Benítez; M. Clampin; George F. Hartig; N. Homeier; D. R. Ardila; Frank Bartko; R. J. Bouwens; L. Bradley; T. J. Broadhurst; Robert A. Brown; Christopher J. Burrows; E. S. Cheng; Paul D. Feldman; David A. Golimowski; Caryl Gronwall; L. Infante; Randy A. Kimble; John E. Krist; Michael P. Lesser

We measure the morphology-density relation (MDR) and morphology-radius relation (MRR) for galaxies in seven z ~ 1 clusters that have been observed with the Advanced Camera for Surveys (ACS) on board the Hubble Space Telescope. Simulations and independent comparisons of our visually derived morphologies indicate that ACS allows one to distinguish between E, S0, and spiral morphologies down to z850 = 24, corresponding to L/L* = 0.21 and 0.30 at z = 0.83 and 1.24, respectively. We adopt density and radius estimation methods that match those used at lower redshift in order to study the evolution of the MDR and MRR. We detect a change in the MDR between 0.8 < z < 1.2 and that observed at z ~ 0, consistent with recent work; specifically, the growth in the bulge-dominated galaxy fraction, fE+S0, with increasing density proceeds less rapidly at z ~ 1 than it does at z ~ 0. At z ~ 1 and Σ ≥ 500 galaxies Mpc-2, we find fE+S0 = 0.72 ± 0.10. At z ~ 0, an E+S0 population fraction of this magnitude occurs at densities about 5 times smaller. The evolution in the MDR is confined to densities Σ 40 galaxies Mpc-2 and appears to be primarily due to a deficit of S0 galaxies and an excess of Sp+Irr galaxies relative to the local galaxy population. The fE-density relation exhibits no significant evolution between z = 1 and 0. We find mild evidence to suggest that the MDR is dependent on the bolometric X-ray luminosity of the intracluster medium. Implications for the evolution of the disk galaxy population in dense regions are discussed in the context of these observations.


The Astrophysical Journal | 2008

z ~ 7-10 Galaxies in the HUDF and GOODS Fields: UV Luminosity Functions

R. J. Bouwens; Garth D. Illingworth; Marijn Franx; Holland C. Ford

We use all available deep optical ACS and near-IR data over both the HUDF and the two GOODS fields to search for star-forming galaxies at -->z 7 and constrain the UV LF within the first 700 Myr. Our data set includes ~23 arcmin2 of deep NICMOS -->J + H data and ~248 arcmin2 of ground-based (ISAAC+MOIRCS) data, coincident with ACS optical data of greater or equal depths. In total, we find eight --> ~ 7.3 z-dropouts in our search fields, but no -->z ~ 9 J-dropout candidates. A careful consideration of a wide variety of different contaminants suggest an overall contamination level of just ~12% for our z-dropout selection. After performing detailed simulations to accurately estimate the selection volumes, we derive constraints on the UV LFs at -->z ~ 7 and -->z ~ 9. For a faint-end slope -->α = − 1.74, our most likely values for -->MUV* and * at -->z ~ 7 are – -->19.8 ± 0.4 mag and -->1.1+ 1.7−0.7 × 10−3 Mpc−3, respectively. Our search results for -->z ~ 9 J-dropouts set a 1 σ lower limit on -->MUV* of –19.6 mag assuming that * and α are the same as their values at slightly later times. This lower limit on -->MUV* is 1.4 mag fainter than our best-fit value at -->z ~ 4, suggesting that the UV LF has undergone substantial evolution over this time period. No evolution is ruled out at 99% confidence from -->z ~ 7 to -->z ~ 6 and at 80% confidence from -->z ~ 9 to -->z ~ 7. We find that the mass-to-light ratio of halos evolves as ~ -->(1 + z)−1 if we require that the observed brightening in -->MUV* with redshift [i.e., -->MUV* = (− 21.02 ± 0.09) + (0.36 ± 0.08) (z − 3.8) ] be consistent with the expected evolution in the halo mass function. Finally, we consider the shape of the UV LF at -->z 5 and discuss the implications of the Schechter-like form of the observed LFs, particularly the unexpected abrupt cutoff at the bright end.


The Astrophysical Journal | 1998

The Hubble Space Telescope Key Project on the Extragalactic Distance Scale. XIII. The Metallicity Dependence of the Cepheid Distance Scale

Robert C. Kennicutt; Peter B. Stetson; Abhijit Saha; Dd Kelson; Daya M. Rawson; Shoko Sakai; Barry F. Madore; Jeremy R. Mould; Wendy L. Freedman; Fabio Bresolin; Laura Ferrarese; Holland C. Ford; Brad K. Gibson; John A. Graham; Mingsheng Han; Paul Harding; John G. Hoessel; John P. Huchra; Shaun M. G. Hughes; Garth D. Illingworth; Lucas M. Macri; Randy L. Phelps; Nancy Ann Silbermann; Anne Marie Turner; Peter R. Wood

Uncertainty in the metal-abundance dependence of the Cepheid variable period-luminosity (PL) relation remains one of the outstanding sources of systematic error in the extragalactic distance scale and in the Hubble constant. To test for such a metallicity dependence, we have used the Wide Field Planetary Camera 2 (WFPC2) on the Hubble Space Telescope (HST) to observe Cepheids that span a range in oxygen abundance of 0.7 ± 0.15 dex in two fields in the nearby spiral galaxy M101. A differential analysis of the PL relations in V and I in the two fields yields a marginally significant change in the inferred distance modulus on metal abundance, with δ(m-M)0/δ[O/H] = -0.24 ± 0.16 mag dex-1. The trend is in the theoretically predicted sense that metal-rich Cepheids appear brighter and closer than metal-poor stars. External comparisons of Cepheid distances with those derived from three other distance indicators, in particular from the tip of the red giant branch method, further constrain the magnitude of any Z-dependence of the PL relation at V and I. The overall effects of any metallicity dependence on the distance scale derived with HST will be of the order of a few percent or less for most applications, though distances to individual galaxies at the extremes of the metal abundance range may be affected at the 10% level.


The Astrophysical Journal | 2008

Recent Structural Evolution of Early-Type Galaxies: Size Growth from z = 1 to z = 0*

Arjen van der Wel; B. Holden; A. Zirm; Marijn Franx; Alessandro Rettura; Garth D. Illingworth; Holland C. Ford

Strong size and internal density evolution of early-type galaxies between -->z ~ 2 and the present has been reported by several authors. Here we analyze samples of nearby and distant ( -->z ~ 1) galaxies with dynamically measured masses in order to confirm the previous, model-dependent results and constrain the uncertainties that may play a role. Velocity dispersion (σ) measurements are taken from the literature for 50 morphologically selected -->0.8 Mdyn = 2 × 1011 M☉. Sizes ( -->Reff) are determined with Advanced Camera for Surveys imaging. We compare the distant sample with a large sample of nearby ( -->0.04 σ − Reff distributions of the nearby and distant samples, regardless of sample selection effects. The implied evolution in -->Reff at fixed mass between -->z = 1 and the present is a factor of -->1.97 ± 0.15. This is in qualitative agreement with semianalytic models; however, the observed evolution is much faster than the predicted evolution. Our results reinforce and are quantitatively consistent with previous, photometric studies that found size evolution of up to a factor of 5 since -->z ~ 2. A combination of structural evolution of individual galaxies through the accretion of companions and the continuous formation of early-type galaxies through increasingly gas-poor mergers is one plausible explanation of the observations.

Collaboration


Dive into the Holland C. Ford's collaboration.

Top Co-Authors

Avatar

Marc Postman

Space Telescope Science Institute

View shared research outputs
Top Co-Authors

Avatar

N. Benítez

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

George F. Hartig

Space Telescope Science Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Marijn Franx

Kapteyn Astronomical Institute

View shared research outputs
Top Co-Authors

Avatar

David A. Golimowski

Space Telescope Science Institute

View shared research outputs
Top Co-Authors

Avatar

L. Bradley

Space Telescope Science Institute

View shared research outputs
Researchain Logo
Decentralizing Knowledge